

Final Report

February 2016

SAFE AND EFFICIENT PEDESTRIAN ACCOMODATION AT COORDINATED

SIGNALIZED INTERSECTIONS

SOLARIS Consortium, Tier 1 University Transportation Center

Center for Advanced Transportation Education and Research

Department of Civil and Environmental Engineering

University of Nevada, Reno

Reno, NV 89557

Zong Tian, PhD, PE
Ali Gholami, PhD
Center for Advanced Transportation Education and Research
Department of Civil and Environmental Engineering
University of Nevada, Reno
Reno, NV 89557

1 DISCLAIMER

DISCLAIMER

The contents of this report reflect the views of the authors, who are responsible for the facts

and accuracy of the information presented herein. This document is disseminated under the

sponsorship of the U.S. Department of Transportation’s University Transportation Centers

Program, in the interest of information exchange. The U.S. Government assumes no liability

for the contents or use thereof.

2 EXECUTIVE SUMMARY

EXECUTIVE SUMMARY

The purpose of this research is to study how pedestrian crossing timing should be considered

in coordinated signal operations. A practical guideline needs to be developed to determine

when accommodation (A) of pedestrian timing into coordination is preferable over non-

accommodating (NA). With this guideline, practitioners input cycle length (C), volume (v),

required pedestrian timing (RPT), and other signal parameters. The guideline will lead to a

recommendation on whether A or NA should be used based on arterial vehicle delay. As part

of the guideline development, a mathematical model was developed and validated by

simulating 3,456 scenarios in VISSIM traffic simulation. Then, a software tool was created

based on the mathematical model, named PeTASC (Pedestrian Timing Accommodation into

Signal Coordination). A link is provided to download this free software. PeTASC can be used

as a reference for an appropriate pedestrian timing design. This software can help practitioners

design a better coordination plan and as a result, reduce arterial delay.

Keywords: Pedestrian timing accommodation; signal coordination; transition methods,

PeTASC

3 ACKNOWLEDGMENTS

ACKNOWLEDGMENTS

We wish to gratefully acknowledge the contributions of several people who made the progress

of this research possible. This especially includes Dr. Ben Wang, Dr. Rasool Andalibian, Dr.

Qi Xu, Mr. Mao Dean and Mr. Andrew Jayankura. Special thanks go to Mrs. Erika Hutton for

her effort on proofreading the report.

4 GLOSSARY OF ACRONYMS

GLOSSARY OF ACRONYMS

CATER: Center for Advanced Transportation Education and Research

GUI: Graphical User Interface

ITE: Institute of Transportation Engineers

NDOT: Nevada Department of Transportation

A: Accommodating Pedestrian Timing

NA: Not-accommodating Pedestrian Timing

5 TABLE OF CONTENTS

TABLE OF CONTENTS

DISCLAIMER .. 1

EXECUTIVE SUMMARY .. 2

ACKNOWLEDGMENTS ... 3

GLOSSARY OF ACRONYMS .. 4

TABLE OF CONTENTS ... 5

TABLE OF FIGURES .. 6

TABLE OF TABLES .. 7

INTRODUCTION .. 8

LITERATURE REVIEW ... 9

MATHEMATICAL MODEL ... 11

Non-accommodating PT ... 12

Accommodating PT ... 21

The effect of semi-actuated coordination .. 24

The optimum method ... 25

MODEL VALIDATION ... 27

MODEL SOFTWARE ... 30

SUMMARY .. 37

REFERENCES .. 39

Appendix A: COM interface C# code .. 40

Appendix B: PeTASC MATLAB code ... 43

6 TABLE OF FIGURES

TABLE OF FIGURES

Figure 1: Transition due to non-accommodating pedestrian timing at coordinated signals 11

Figure 2: Accommodating pedestrian timing at coordinated signals ... 22

Figure 3: Simulation average delay increment after accommodating pedestrian timing, cycle 60 sec,

𝑡𝑎 = 15 sec ... 28

Figure 4: Mathematical model delay caused by adding pedestrian timing, cycle 60 sec, 𝑡𝑎 = 15 sec,

Ped Vol 30 pph .. 28

Figure 5: Sensitivity Analysis on distance between intersections ... 29

Figure 6: Correlation of 0.25 and 0.75 mile for the conditions of Figure 5 .. 29

Figure 7: QR code and link address of PeTASC for download ... 30

Figure 8: Screen shot of PeTASC ... 31

Figure 9: delay caused by adding PT to signal coordination, C: 80 sec; g: 0.5 C; 𝑔𝑙: 0.2 C; ta: 45 sec; E:

3 sec; n: 3; vm: 1200 vph; vs: 0.3 vm; fs: 1.056 vps; vl: 0.1 vm; vp: 45 pph ... 32

Figure 10: delay caused by adding PT to signal coordination, 𝜇 = 0.2, 𝜌 = 1 33

Figure 11: 𝑡𝑎 analysis over cycle length, pedestrian and vehicle volume, 𝑡𝑎 = 35 𝑠𝑒𝑐 34

Figure 12: 𝑡𝑎 analysis over cycle length, pedestrian and vehicle volume, 𝑡𝑎 = 45 𝑠𝑒𝑐 35

Figure 13: 𝑡𝑎 analysis over cycle length, pedestrian and vehicle volume, 𝑡𝑎 = 25 𝑠𝑒𝑐 35

Figure 14: Volume threshold for accommodating pedestrian timing into signal coordination, cycle

length 60 seconds. Left side of each curve shows not accommodation area and right side

accommodation area. ... 36

7 TABLE OF TABLES

TABLE OF TABLES

Table 1: Range of simulation parameters ... 27

Table 2: Model inputs ... 31

Table 3: Range of parameters ... 32

8 INTRODUCTION

INTRODUCTION

The majority of pedestrian accidents occur at signalized intersections. Increasing mobility and

safety for pedestrians has been a major initiative, particularly in light of the recent federal focus

on the Americans with Disability Act (ADA). The Manual on Uniform Traffic Control Devices

(MUTCD) has adopted a new standard for determining pedestrian clearance times when

crossing signalized intersections, where pedestrian walking speed is decreased from the

previously adopted 4 feet per second to 3.5 feet per second. This revised standard will yield

longer pedestrian crossing intervals, which can negatively affect signal system efficiency and

increase congestion. Therefore, the intent of providing pedestrian safety may be compromised

by increased driver frustration and vehicle collision hazards. The impact could be more

dramatic for coordinated signal systems where a choice must be made among two pedestrian

handling alternatives while developing coordinated signal timing plans: non-accommodating

or accommodating pedestrian timing (e.g., using a longer cycle length). . These two alternatives

affect coordinated signal systems in different ways. When pedestrian timing is accommodated,

longer cycle length is generally needed. A longer cycle length results in longer delays under

low volume conditions. On the other hand, when pedestrian timing is not accommodated due

to use of a shorter cycle length, disruption to coordination can occur if a pedestrian crossing

causes a signal to go into transition. In order to achieve optimal system performance, the

conditions for when one alternative is preferred over another must be clearly identified, based

on which guidelines can be developed for practicing signal engineers. Currently, such

guidelines do not exist in published literature.

The primary objectives of this research are: (1) to address how pedestrian volume levels,

pedestrian timing, signal transition methods, signal splits, number of intersections, weight of

the side street (compared to the main street) and cycle length affect vehicle delay in a context

of coordinated operation; and (2) to develop a guideline for selecting the appropriate pedestrian

timing alternative for the best system performance. Due to the wide range of parameters

affecting the results, this guideline is provided as a software.

9 LITERATURE REVIEW

LITERATURE REVIEW

Pedestrian crossing and handling alternatives at signalized intersections often involve

conflicting objectives and need a balanced consideration of both safety and efficiency.

Additionally, operational strategies should also target both pedestrian service quality and

vehicular service quality. For coordinated signal systems, accommodating pedestrian timing in

the signal timing plans could provide improved service to pedestrians while presenting

negligible impacts on vehicular traffic, especially when longer signal cycle needs are driven by

vehicular traffic demands. However, when vehicle and pedestrian volumes are low,

accommodating pedestrians may require an unnecessary long cycle length, which can result in

long delays and driver frustration. Under what conditions pedestrian timing should be

accommodated and how it impacts the overall system efficiency has been a long debating

subject among practicing traffic engineers. Discussions on this topic can be found in several

documents (FHWA, 2008; Parsonson, 1992; Zegeer et al., 1982 and 1984; Petzold, 1997);

however, limited guidelines are provided on how to select a pedestrian timing alternative under

certain traffic conditions. Tian et al. (2001 and 2004) have conducted research on this topic;

however, their findings were limited to some empirical evidence without robust methodologies

being developed or comprehensively tested in the field. The real research issue lies in how

different levels of pedestrian volumes affect the two pedestrian timing alternatives by

considering a wide range of traffic volume and network conditions as well as the signal

transition impacts on signal coordination.

For coordinated signal systems, traffic engineers have used two general strategies for

timing signals to deal with pedestrian crossings: timing based on pedestrian minimums and

timing based on vehicle minimums. Tian et al. (1999 and 2000) have analyzed the various

effects of the two pedestrian treatment alternatives through case studies. It was found that

although timing based on vehicle minimums can generally result in a shorter system cycle

length, timing based on pedestrian minimums can normally achieve the same operational

efficiency. The most significant advantage of timing based on pedestrian minimums is that the

signal system will always remain in coordination. According to their study, the only drawback

of timing based on pedestrian minimums was the likely use of longer cycle length. It was

recommended that timing based on the pedestrian minimum technique should be applied when

longer cycle length is required for the system and medium to high level pedestrian crossing

activities exist.

10 LITERATURE REVIEW

Timing based on pedestrian minimums requires accommodation of pedestrian crossing

time in the controller phase splits. The major advantage of this strategy is that the signal will

remain in coordination regardless of whether there is a pedestrian phase activation; thus, it is a

preferred alternative from the point of view of system operations (Tian and Urbanik, 2001).

Tian et al. (2001) provided various alternatives for pedestrian timings under split-phasing

operations. The advantages and disadvantages, implementation strategies, and potential impact

on intersection operations, especially on coordinated signal systems, are addressed with regard

to each timing alternative. In another study, Tian et al. (2006) proposed a model that consists

of the probability of having a pedestrian call in a cycle, and the corresponding capacities and

delays for the traffic movements. The model was compared with the SimTraffic simulation

model based on a generic intersection with semi-actuated signal control, and was found to

produce consistent delay results between the two models. Using the proposed model, the effects

of pedestrians on intersection capacity and delay were analyzed. They concluded that the

vehicle movement that is concurrent with pedestrian movement can achieve a higher capacity

with a shorter cycle length with the same pedestrian volumes.

None of these studies, however, have dealt with the impact of accommodating pedestrian

timing on coordinated signal systems in much detail. In the next section, a mathematical model

will be developed that can be used as a robust method for the analysis of accommodating

pedestrian timing under different volume and signal conditions.

11 MATHEMATICAL MODEL

MATHEMATICAL MODEL

Accommodating pedestrian timing in coordinated signal systems implies that the cycle length

must be long enough to accommodate the Walk and Flash-Don’t-Walk (called pedestrian

clearance interval) for the side street. The advantage of this treatment is that a signal will always

remain in coordination regardless of whether a pedestrian is crossing or not. The major

disadvantage is the resulting longer cycle length, which may be operationally inefficient when

vehicular traffic volume is low. Unnecessary long vehicle delays can result. The other

alternative is to not accommodate pedestrian timing, i.e., the side street phase split is shorter

than what is needed for pedestrian crossing. Although this alternative has no pedestrian safety

degradation (i.e., pedestrians still receive the same WALK and Flash-Don’t-Walk times during

a crossing), the signal may go into transition, which will disrupt coordination, negatively

affecting the system efficiency. In order to determine what pedestrian timing alternative is the

best, this section proposes a mathematical model that relates vehicle volume, pedestrian

volume, and network conditions to the delay caused by adding pedestrian timing.

Figure 1: Transition due to non-accommodating pedestrian timing at coordinated signals

12 MATHEMATICAL MODEL

Non-accommodating PT

Suppose Intersections 1 to 4 in Fig. 1 are coordinated and pedestrian timing (PT) is not

accommodated into traffic signal splits. If there is a pedestrian call at Intersection 2 to cross

the main street and the required PT is more than the green time of the side street (for simplicity,

green time through this section means green time plus yellow and all red), then green time of

the main street (g) will be delayed by the additional time needed for pedestrians to cross the

main street at the first cycle in transition. The value of additional time depends on the side

street green time interval and required pedestrian time and can be calculated by the following

equation:

𝑡𝑎 = 𝑡𝑝 − 𝑔𝑠

Equation 1

𝑡𝑎: Additional time needed for green time of the side street for pedestrians to cross main

street (sec)

𝑡𝑝: Required pedestrian time (walk time plus flash do not walk plus clearance time) (sec)

𝑔𝑠: Side street green time (sec)

Theoretically, if 𝑡𝑎 ≥ 𝐶𝑦𝑐𝑙𝑒 𝐿𝑒𝑛𝑔𝑡ℎ, then only the remainder of the cycle length divided

by 𝑡𝑎 should be used as 𝑡𝑎. However, in practice this issue is very unlikely and therefore, it will

not be discussed here.

As the next transition cycles, the amount of 𝑡𝑎 depends on the transition method and the

number of transition cycles during one transition period. The number of transition cycles during

one transition period can be calculated by:

𝛽𝑠 = [
𝑡𝑎

𝐶 × 𝜇
]
+

Equation 2

𝛽𝑙 = [
𝐶 − 𝑡𝑎
𝐶 × 𝜇

]
+

Equation 3

𝛽𝑠: The number of transition cycles during one transition period at the shortening

transition method. The plus in the equation means that the value should be rounded to the next

integer.

13 MATHEMATICAL MODEL

𝛽𝑙: The number of transition cycles during one transition period at the lengthening

transition method. The plus in the equation means that the value should be rounded to the next

integer.

𝐶: Cycle length (sec)

𝜇: The maximum percentage of cycle length that is permissible to add to or to subtract

from cycle length.

From equations 2 and 3, the amount that is subtracted from each cycle (shortening

method) or added to each cycle (lengthening method) can be calculated by:

𝛼𝑠 = −
𝑡𝑎
𝛽𝑠

Equation 4

𝛼𝑙 =
𝐶 − 𝑡𝑎
𝛽𝑙

Equation 5

𝛼𝑠: The amount that is added to each cycle to lengthen the cycle length at the shortening

method

𝛼𝑙: The amount that is added to each cycle to lengthen the cycle length at the lengthening

method

The time distance of the lower bound of delayed green to the beginning of the next green

time at Intersections 2 and 3 can be calculated by the following equations:

𝐿2
𝑖 = {

𝑡𝑎 + (𝑖 − 1)𝛼 𝑖𝑓 𝑡𝑎 + (𝑖 − 1)𝛼 ≤ 𝑟𝑡

𝑟𝑡 𝑖𝑓 𝑡𝑎 + (𝑖 − 1)𝛼 > 𝑟𝑡

𝑖 = 1, 2, … , 𝛽

Equation 6

𝐿3
𝑖 = {

𝐶 − 𝑡𝑎 − (𝑖 − 1)𝛼 𝑖𝑓 𝐶 − 𝑡𝑎 − (𝑖 − 1)𝛼 ≤ 𝑟

𝑟 𝑖𝑓 𝐶 − 𝑡𝑎 − (𝑖 − 1)𝛼 > 𝑟

𝑖 = 1, 2, … , 𝛽

Equation 7

14 MATHEMATICAL MODEL

𝐿2
𝑖 : The time distance of the lower bound of delayed green to the beginning of the next

green time at Intersection 2 in Cycle i during transition

𝐿3
𝑖 : The time distance of the lower bound of delayed green to the beginning of the next

green time at Intersection 3 in Cycle i during transition

𝑟𝑡: Main street red time interval during transition period (sec)

And the time distance of the upper bound of transition green (𝑔𝑡) to the beginning of

green time of Intersection 2 can be calculated by the following equations:

𝑈2
𝑖 = {

𝑡𝑎 + (𝑖 − 1)𝛼 − 𝑔 𝑖𝑓 𝑡𝑎 + (𝑖 − 1)𝛼 > 𝑔

0 𝑖𝑓 𝑡𝑎 + (𝑖 − 1)𝛼 ≤ 𝑔

𝑖 = 1, 2, … , 𝛽

Equation 8

𝑈3
𝑖 = {

𝐶 − 𝑡𝑎 − (𝑖 − 1)𝛼 − 𝑔 𝑖𝑓 𝐶 − 𝑡𝑎 − (𝑖 − 1)𝛼 − 𝑔 > 𝑔𝑡

0 𝑖𝑓 𝐶 − 𝑡𝑎 − (𝑖 − 1)𝛼 − 𝑔 ≤ 𝑔𝑡

𝑖 = 1, 2, … , 𝛽

Equation 9

𝑈2
𝑖 : The time distance of the upper bound of delayed green to the beginning of the next

green time at Intersection 2 in Cycle i during transition

𝑈3
𝑖 : The time distance of the upper bound of delayed green to the beginning of the next

green time at Intersection 3 in Cycle i during transition

The amount of green time that is delayed by transition is:

𝑔𝑑,2
𝑖 = 𝐿2

𝑖 − 𝑈2
𝑖

Equation 10

𝑔𝑑,3
𝑖 = 𝐿3

𝑖 − 𝑈3
𝑖

Equation 11

𝑔𝑑,2
𝑖 : Amount of green time that is delayed by transition at Intersection 2 in Cycle i

during transition

15 MATHEMATICAL MODEL

𝑔𝑑,3
𝑖 : Amount of green time that is delayed by transition at Intersection 3 in Cycle i

during transition

When signals are coordinated, except for the first intersection, a portion of vehicles

arrives as a platoon to each intersection. The portion of green time that bunched vehicles use

at the beginning of green time of the main street can be calculated by:

𝑔𝑏 =

{

 𝑟 × 𝑣𝑚

𝑓𝑠
 𝑖𝑓

𝑟 × 𝑣𝑚

𝑓𝑠
< 𝑔

𝑔 𝑖𝑓
𝑟 × 𝑣𝑚

𝑓𝑠
≥ 𝑔

Equation 12

𝑔𝑏 : The interval at the beginning of green time of the main street that vehicles dispatch

as bunched from the first intersection (sec).

𝑟: Red time interval of main street (sec)

𝑣𝑚 : Main street volume (vps)

𝑓𝑠 : Saturated flow rate (vps)

𝑔: Green time interval of main street (sec)

Vehicles will be dispatched randomly for the rest of the green time interval. The amount

of green time that vehicles are dispatched randomly can be calculated as follows:

𝑔𝑟 = 𝑔 − 𝑔𝑏

Equation 13

𝑔𝑟 : The interval toward the end of green time of the main street that vehicles dispatch

randomly from the first intersection (sec).

The value of 𝑔𝑏 and 𝑔𝑟 change during transition. The value of them during each cycle

of the transition period can be calculated by the following equations:

16 MATHEMATICAL MODEL

𝑔𝑏,2
𝑖 =

{

𝑔𝑏 𝑖𝑓 𝑈2

𝑖 = 0 𝑎𝑛𝑑 𝑔𝑏 < 𝑔𝑑,2
𝑖

𝑔𝑑,2
𝑖 𝑖𝑓 𝑈2

𝑖 = 0 𝑎𝑛𝑑 𝑔𝑏 ≥ 𝑔𝑑,2
𝑖

𝑔𝑏 𝑖𝑓 𝑈2
𝑖 > 0 𝑎𝑛𝑑 𝐿2

𝑖 − 𝑈2
𝑖 = 𝑔

0 𝑖𝑓 𝑈2
𝑖 > 0 𝑎𝑛𝑑 𝐿2

𝑖 − 𝑈2
𝑖 < 𝑔 𝑎𝑛𝑑 𝑔𝑟 ≥ 𝑔𝑑,2

𝑖

𝑔𝑑,2
𝑖 − 𝑔𝑟 𝑖𝑓 𝑈2

𝑖 > 0 𝑎𝑛𝑑 𝐿2
𝑖 − 𝑈2

𝑖 < 𝑔 𝑎𝑛𝑑 𝑔𝑟 < 𝑔𝑑,2
𝑖

Equation 14

𝑔𝑟,2
𝑖 =

{

𝑔𝑑,2
𝑖 − 𝑔𝑏 𝑖𝑓 𝑈2

𝑖 = 0 𝑎𝑛𝑑 𝑔𝑏 < 𝑔𝑑,2
𝑖

0 𝑖𝑓 𝑈2
𝑖 = 0 𝑎𝑛𝑑 𝑔𝑏 ≥ 𝑔𝑑,2

𝑖

𝑔𝑟 𝑖𝑓 𝑈2
𝑖 > 0 𝑎𝑛𝑑 𝐿2

𝑖 − 𝑈2
𝑖 = 𝑔

𝑔𝑑,2
𝑖 𝑖𝑓 𝑈2

𝑖 > 0 𝑎𝑛𝑑 𝐿2
𝑖 − 𝑈2

𝑖 < 𝑔 𝑎𝑛𝑑 𝑔𝑟 ≥ 𝑔𝑑,2
𝑖

𝑔𝑟 𝑖𝑓 𝑈2
𝑖 > 0 𝑎𝑛𝑑 𝐿2

𝑖 − 𝑈2
𝑖 < 𝑔 𝑎𝑛𝑑 𝑔𝑟 < 𝑔𝑑,2

𝑖

Equation 15

𝑔𝑏,3
𝑖 =

{

𝑔𝑏 𝑖𝑓 𝑈3

𝑖 = 0 𝑎𝑛𝑑 𝑔𝑏 < 𝑔𝑑,3
𝑖

𝑔𝑑,3
𝑖 𝑖𝑓 𝑈3

𝑖 = 0 𝑎𝑛𝑑 𝑔𝑏 ≥ 𝑔𝑑,3
𝑖

𝑔𝑏 𝑖𝑓 𝑈3
𝑖 > 0 𝑎𝑛𝑑 𝐿3

𝑖 − 𝑈3
𝑖 = 𝑔𝑡

0 𝑖𝑓 𝑈3
𝑖 > 0 𝑎𝑛𝑑 𝐿3

𝑖 − 𝑈3
𝑖 < 𝑔𝑡 𝑎𝑛𝑑 𝑔𝑟 ≥ 𝑔𝑑,3

𝑖

𝑔𝑑,3
𝑖 − 𝑔𝑟 𝑖𝑓 𝑈3

𝑖 > 0 𝑎𝑛𝑑 𝐿3
𝑖 − 𝑈3

𝑖 < 𝑔𝑡 𝑎𝑛𝑑 𝑔𝑟 < 𝑔𝑑,3
𝑖

Equation 16

𝑔𝑟,2
𝑖 =

{

𝑔𝑑,3
𝑖 − 𝑔𝑏 𝑖𝑓 𝑈3

𝑖 = 0 𝑎𝑛𝑑 𝑔𝑏 < 𝑔𝑑,3
𝑖

0 𝑖𝑓 𝑈3
𝑖 = 0 𝑎𝑛𝑑 𝑔𝑏 ≥ 𝑔𝑑,3

𝑖

𝑔𝑟 𝑖𝑓 𝑈3
𝑖 > 0 𝑎𝑛𝑑 𝐿3

𝑖 − 𝑈3
𝑖 = 𝑔𝑡

𝑔𝑑,3
𝑖 𝑖𝑓 𝑈3

𝑖 > 0 𝑎𝑛𝑑 𝐿3
𝑖 − 𝑈3

𝑖 < 𝑔𝑡 𝑎𝑛𝑑 𝑔𝑟 ≥ 𝑔𝑑,3
𝑖

𝑔𝑟 𝑖𝑓 𝑈3
𝑖 > 0 𝑎𝑛𝑑 𝐿3

𝑖 − 𝑈3
𝑖 < 𝑔𝑡 𝑎𝑛𝑑 𝑔𝑟 < 𝑔𝑑,3

𝑖

Equation 17

𝑔𝑏,2
𝑖 : The time interval at the beginning of green time of the main street at Intersection 2

that vehicles dispatch as bunched from the first intersection in Cycle i during transition (sec).

𝑔𝑟,2
𝑖 : The time interval at the beginning of green time of the main street at Intersection 2

that vehicles dispatch randomly from the first intersection in Cycle i during transition (sec).

𝑔𝑏,3
𝑖 : The time interval at the beginning of green time of the main street at Intersection 3

that vehicles dispatch as bunched from Intersection 2 in Cycle i during transition (sec).

17 MATHEMATICAL MODEL

𝑔𝑟,3
𝑖 : The time interval at the beginning of green time of the main street at Intersection 2

that vehicles dispatch as randomly from Intersection 2 in Cycle i during transition (sec).

The average delay that vehicles experience because of transition during one cycle can

be calculated by:

𝑍𝑛,2
𝑖 = [𝑔𝑏,2

𝑖 × 𝑓𝑠 (
𝐿2
𝑖 + (𝑈2

𝑖 + 𝑔𝑟,2
𝑖)

2
)] + [𝑔𝑟,2

𝑖 × 𝑣𝑚 (
(𝐿2
𝑖 − 𝑔𝑏,2

𝑖) + 𝑈2
𝑖

2
)]

− [𝑣𝑠,2 × 𝜌(
(𝑡𝑎)

2

2
)]

Equation 18

𝑍𝑛,3
𝑖 = [𝑔𝑏,3

𝑖 × 𝑓𝑠 (
𝐿3
𝑖 + (𝑈3

𝑖 + 𝑔𝑟,3
𝑖)

2
)] + [𝑔𝑟,3

𝑖 × 𝑣𝑚, (
(𝐿3
𝑖 − 𝑔𝑏,3

𝑖) + 𝑈3
𝑖

2
)]

𝑍𝑛,2
𝑖 : Delay of cycle i due to pedestrian call at Intersection 2 (veh-sec)

𝑣𝑠 : Side street volume (vps)

𝜌: The weight of side street volume compared to main street (0 ≤ 𝜌 ≤ 1)

The third term of Equation 18, refers to the side street and is added only to the first cycle

in the transition period. The factor 𝜌 is added to the model to leverage the importance of the

main street compared to side street(s). Many agencies prefer a good progression along the main

street that sometimes imposes more delays on side street(s) vehicles. If 𝜌 is equal to 1, then the

importance of one vehicle on the main street is equal to the side street, and if 𝜌 is equal to zero,

it means vehicles at side streets are completely overlooked.

If the pedestrian volume is high, before a transition period ends, another transition period

starts because of another pedestrian call. To consider overlapping transition periods, the

following equation calculates the number of cycles that go into transition before another

pedestrian call occurs:

𝛾 =

{

1

𝑃(𝑋 ≥ 1)
 𝑖𝑓

1

𝑃(𝑋 ≥ 1)
≤ 𝛽

𝛽 𝑖𝑓
1

𝑃(𝑋 ≥ 1)
> 𝛽

Equation 19

18 MATHEMATICAL MODEL

𝛾: The number of cycles that go into transition before another pedestrian call occurs.

𝑃(𝑋 ≥ 1): Probability of having at least one pedestrian call during one cycle

For example if 𝑃(𝑋 ≥ 1) = 0.2 and 𝛽 = 6 then 𝛾 = 5. This means that six cycles are

needed for the signal to return to coordination but after five cycles, there would be another

pedestrian call.

The probability of having at least one pedestrian call at a cycle can be expressed by the

following equation:

𝑃(𝑋 ≥ 1) = 1 − 𝑃(𝑋 = 0) = 1 − 𝑒−(𝑣𝑝 /3600)𝐶

Equation 20

𝑣𝑝 : Pedestrian volume for crossing the main street (pph)

By putting together the previous equations, the following equations can calculate the

delay for one transition period at the intersection with pedestrian call (Intersection 2) and its

next intersection (Intersection 3):

𝑍𝑛,2
𝑡 = [∑[[𝑔𝑏,2

𝑖 × 𝑓𝑠 (
𝐿2
𝑖 + (𝑈2

𝑖 + 𝑔𝑟,2
𝑖)

2
)] + [𝑔𝑟,2

𝑖 × 𝑣𝑚 (
(𝐿2
𝑖 − 𝑔𝑏,2

𝑖) + 𝑈2
𝑖

2
)]]

𝛾

𝑖=1

]

− [𝑣𝑠,2 × 𝜌(
(𝑡𝑎)

2

2
)]

Equation 21

𝑍𝑛,3
𝑡 =∑[[𝑔𝑏,3

𝑖 × 𝑓𝑠 (
𝐿3
𝑖 + (𝑈3

𝑖 + 𝑔𝑟,3
𝑖)

2
)] + [𝑔𝑟,3

𝑖 × 𝑣𝑚, (
(𝐿3
𝑖 − 𝑔𝑏,3

𝑖) + 𝑈3
𝑖

2
)]]

𝛾

𝑖=1

Equation 22

𝑍𝑛,2
𝑡 : Delay of one transition period due to non-accommodating PT at Intersection 2 if

pedestrian call occurs at Intersection 2

𝑍𝑛,3
𝑡 : Delay of one transition period due to non-accommodating PT at Intersection 3 if

pedestrian call occurs at Intersection 2

The delay Z does not occur at all cycles. Therefore, to calculate a transition-caused delay

for one hour, it should be determined how many transition periods happen during one hour. If

19 MATHEMATICAL MODEL

the increase and decrease of a cycle length during transition is overlooked, the number of

transition periods can be calculated by:

𝑁 =

{

3600

𝐶 × 𝛾
 𝑖𝑓

1

𝑃(𝑋 ≥ 1)
≤ 𝛽

3600

𝐶
× 𝑃(𝑋 ≥ 1) 𝑖𝑓

1

𝑃(𝑋 ≥ 1)
> 𝛽

Equation 23

𝑁: Number of transition periods per hour

The length of the first cycle in transition is equal to 𝐶 + 𝑡𝑎 and the length of the next

cycles in transition for shortening and lengthening methods are calculated by the following

equations:

𝐶𝑡 = 𝐶 + 𝛼

Equation 24

𝐶𝑡: The length of cycles after the first cycle in transition period (sec)

Therefore, the average of cycle length during one hour can be calculated by:

𝐶𝑎 =

{

 (𝐶 + 𝑡𝑎) + [(𝛾 − 1)𝐶𝑡]

𝛾
 𝑖𝑓

1

𝑃(𝑋 ≥ 1)
≤ 𝛽

(𝐶 + 𝑡𝑎) + [(𝛽 − 1)𝐶𝑡]

𝛽
𝑃(𝑋 ≥ 1)𝛽 + 𝐶[1 − [𝑃(𝑋 ≥ 1)𝛽]] 𝑖𝑓

1

𝑃(𝑋 ≥ 1)
> 𝛽

Equation 25

𝐶𝑎: Average cycle length during one hour (sec)

Using the value of average cycle length, Equation 23 can be rewritten as follow:

𝑁 =

{

3600

𝐶𝑎 × 𝛾
 𝑖𝑓

1

𝑃(𝑋 ≥ 1)
≤ 𝛽

3600

𝐶𝑎
× 𝑃(𝑋 ≥ 1) 𝑖𝑓

1

𝑃(𝑋 ≥ 1)
> 𝛽

Equation 26

By multiplying Equations 21 and 22 to Equation 26, hourly delay of non-

accommodating PT due to transition at Intersection 2 and 3 if pedestrian call occurs at

Intersection 2 can be calculated as follow:

20 MATHEMATICAL MODEL

𝐷𝑛,2
ℎ = 𝑍𝑛,2

𝑡 × 𝑁

Equation 27

𝐷𝑛,3
ℎ = 𝑍𝑛,3

𝑡 × 𝑁

Equation 28

𝐷𝑛,2
ℎ : Hourly delay of non-accommodating PT at Intersection 2 if pedestrian call occurs

at Intersection 2.

𝐷𝑛,3
ℎ : Hourly delay of non-accommodating PT at Intersection 3 if pedestrian call occurs

at Intersection 2.

Equations 27 and 28 define the delay caused by non-accommodating PT at one

intersection in the middle of a series of coordinated intersections. It does not consider the other

delays imposed on vehicles.

If the pedestrian call occurs at the first intersection, the vehicles arriving at this

intersection cannot be considered as bunched anymore because its previous intersection is not

coordinated with it. As a result, the cycle length of this intersection compared to its previous

intersection is usually different. Therefore, even if vehicles approach as a platoon because of

another signalized intersection, this bunched arrival can be considered as random. The delay

caused by pedestrian call and transition at this intersection can be modeled as follows:

𝑍𝑛,1
𝑡 = [∑[𝑔𝑑,1

𝑖 × 𝑣𝑚 (
𝐿1
𝑖 − 𝑈1

𝑖

2
)]

𝛾

𝑖=1

] − [𝑣𝑠,1 × 𝜌(
(𝑡𝑎)

2

2
)]

Equation 29

𝑍𝑛,2
𝑡 : Delay of one transition period due to non-accommodating PT at Intersection 1 if

pedestrian call occurs at Intersection 1

All parameters of this equation can be calculated similarly to equations related to

Intersection 2. Also, the delay of its next intersection can be calculated similarly to the delay

of Intersection 3 when pedestrian call occurs at Intersection 2. Therefore, hourly delay of non-

accommodating PT at Intersection 1 and 2 if pedestrian call occurs at Intersection 1 can be

calculated as follows:

𝐷𝑛,1
ℎ = 𝑍𝑛,1

𝑡 × 𝑁

Equation 30

21 MATHEMATICAL MODEL

𝐷𝑛,2
ℎ = 𝑍𝑛,2

𝑡 × 𝑁

Equation 31

𝐷𝑛,1
ℎ : Hourly delay of non-accommodating PT at Intersection 1 if pedestrian call occurs

at Intersection 1.

𝐷𝑛,2
ℎ : Hourly delay of non-accommodating PT at Intersection 2 if pedestrian call occurs

at Intersection 1.

By summing up the total hourly delay of each intersection, the total delay of non-

accommodating PT at intersection with pedestrian call and its next intersection can be

calculated as follows:

𝐷𝑛,𝑡
ℎ =∑𝐷𝑛,𝑖

ℎ

𝑝+1

𝑖=𝑝

Equation 32

𝐷𝑛,𝑡
ℎ : Total hourly delay caused by transition when PT is not accommodated at

Intersection p (intersection with pedestrian call) and its next intersection.

𝑝: The intersection number with pedestrian call

Accommodating PT

Figure 2 demonstrates the problem of adding 𝑡𝑎 to side street green time. For the first

intersection, the following equation can show the delay caused by accommodating PT into

signal timing:

𝐷𝑎,1
ℎ = [

(𝑡𝑎)
2(𝑉𝑚 − 𝑉𝑠,1)

2
] (
3600

𝐶
) =

1800 (𝑡𝑎)
2(𝑉𝑚 − 𝑉𝑠,1)

𝐶

Equation 33

𝐷𝑎,1
ℎ : Delay caused by adding 𝑡𝑎 to side street green time at Intersection 1 (veh-sec).

22 MATHEMATICAL MODEL

Figure 2: Accommodating pedestrian timing at coordinated signals

For the next intersections, if 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑 𝑔𝑟𝑒𝑒𝑛(𝑔𝑟𝑒𝑞) ≤ 𝑎𝑐𝑐𝑜𝑚𝑚𝑜𝑑𝑎𝑡𝑒𝑑 𝑔𝑟𝑒𝑒𝑛 (𝑔𝑎),

then there is no delay at the main street caused by adding 𝑡𝑎 to side street green time. However

if 𝑔𝑟𝑒𝑞 > 𝑔𝑎, then delay can be calculated by multiplying the number of vehicles that could not

be served due to increasing the side street green time. Therefore, for the next intersections

(Intersection 2, 3, …, n) the delay of adding 𝑡𝑎 can be formulated as follows:

𝐷𝑎,𝑖
ℎ =

{

 1800 (𝑡𝑎)

2(−𝜌 × 𝑣𝑠,𝑖)

𝐶
 𝑖𝑓 𝑔𝑟𝑒𝑞 ≤ 𝑔𝑎

1800 (min (𝑡𝑎, 𝑔𝑟𝑒𝑞 − 𝑔𝑎))
2
(𝑓𝑠 − 𝜌 × 𝑣𝑠,𝑖)

𝐶
 𝑖𝑓 𝑔𝑟𝑒𝑞 > 𝑔𝑎

𝑖 = 2, 3, … , 𝑛

Equation 34

𝐷𝑎,𝑖
ℎ : Delay of accommodating 𝑡𝑎 (adding 𝑡𝑎 to side street green time) at Intersection i

(veh-sec)

23 MATHEMATICAL MODEL

𝑛: Number of coordinated signals

𝑣𝑠,𝑖: Side street i volume (vps)

Required green (𝑔𝑟𝑒𝑞) can be calculated using the following equation:

𝑔𝑟𝑒𝑞 =
𝑣𝑚 × 𝐶

𝑓𝑠

Equation 35

𝑔𝑟𝑒𝑞: Required green based on main street volume and its saturation flow rate.

And accommodated green (𝑔𝑎) can be calculated by:

𝑔𝑎 = 𝑔 − 𝑡𝑎

Equation 36

𝑔𝑎: Accommodated green (sec)

Note that in Equation 36, having an equal base in comparing the accommodating and

non-accommodating PT, cycle length is considered equal for both methods; therefore, the

additional time that is added to side street green time will be reduced from the main street green

time. As a result, the value of 𝑡𝑎 must not exceed the main street green time. Practically for a

certain cycle length, maximum 𝑡𝑎 can be determined by the following equation:

𝑡𝑎,𝑚𝑎𝑥,𝑎 ≈ 𝑔 − 𝑔𝑟𝑒𝑞

Equation 37

𝑡𝑎,𝑚𝑎𝑥,𝑛: Maximum 𝑡𝑎 for accommodating PT method

For example, suppose that the cycle length at an intersection is 60 seconds, the green

time of the main street is 30 seconds, left turn green time of the main street is 10 seconds, and

the required pedestrian time (Walk+ FDW+ Clearance) is 50 seconds. This means 30 seconds

must be reduced from the main street green times (left turn and through). Therefore, this cycle

length cannot accommodate pedestrian timing and needs to be increased to a bigger value.

Summing up Equations 33 and 34, the total hourly delay of accommodating PT can be

calculated by:

24 MATHEMATICAL MODEL

𝐷𝑎,𝑡
ℎ =∑𝐷𝑎,𝑖

ℎ

𝑛

𝑖=1

Equation 38

The effect of semi-actuated coordination

Equations 31 and 34 do not account for early green of the main street due to left turn or side

street force-off on delay calculations. In other words, it assumes that coordination is running

under fixed split timing. If coordination is semi-actuated, it is possible that the signal does not

go into transition or 𝑡𝑎 is reduced because of early green of the main street. The following

sections investigate this issue for accommodating and non-accommodating methods.

1) Accommodating

Two extremes for this method exist. The first is when there is no vehicle at the side street

and no pedestrian volume crossing the major street. In this situation, the main street remains

green and therefore 𝑡𝑎 is zero. The second is when intersections are saturated and 𝑃(𝑋 ≥ 1) =

1. In this situation, 𝑡𝑎 is always added to the side street green time. At other times, the amount

of 𝑡𝑎 is a function of side street volume and pedestrian volume:

𝑡𝑎
𝑎 = 𝑓(𝑣𝑠, 𝑣𝑝)

Equation 39

𝑡𝑎
𝑎: Modified 𝑡𝑎 for accommodating PT at semi-actuated coordination.

For Equation 39, if there is even one pedestrian at each cycle, 𝑡𝑎 would be at its

maximum no matter what 𝑣𝑠 is, but if there is no pedestrian, 𝑡𝑎 remains zero assuming that the

controller is able to terminate the side street green time at its original value. With this

assumption, Equation 39 can be simplified as follow:

𝑡𝑎
𝑎 = 𝑡𝑎 × 𝑃(𝑋 ≥ 1)

Equation 40

2) Non-accommodating

When PT is not accommodated, 𝑡𝑎 can be less than required 𝑡𝑎 or even zero due to the

main street left turn force-off. Therefore, the value of 𝑡𝑎 depends on the volume of the main

street left turn and the maximum volume that this left turn can serve per cycle. The left turn per

cycle can be calculated by the following equation:

25 MATHEMATICAL MODEL

𝑣𝑙,𝑐 = 𝑣𝑙 × 𝐶

Equation 41

𝑣𝑙,𝑐: Main street left turn volume per cycle

𝑣𝑙: Main street left turn volume (vps)

The maximum volume that this left turn can serve per cycle can be calculated as follows:

𝑐𝑙,𝑐 = 𝑓𝑠 × 𝑔𝑙

Equation 42

𝑐𝑙,𝑐: Capacity of left turn (vehicle per cycle)

𝑔𝑙: Left turn green time interval (sec)

Based on Equations 41 and 42, the modified 𝑡𝑎 for non-accommodating PT at semi-

actuated coordination signals can be calculated by the following equation:

𝑡𝑎
𝑛 =

{

 𝑡𝑎 𝑖𝑓

𝑣𝑙,𝑐

𝑐𝑙,𝑐
≥ 1 𝑜𝑟

𝑣𝑙,𝑐

𝑐𝑙,𝑐
𝑔𝑙 + 𝐸 ≥ 𝑔𝑙

𝑡𝑎 − [min (𝑡𝑎, 𝑔𝑙 − (
𝑣𝑙,𝑐

𝑐𝑙,𝑐
𝑔𝑙 + 𝐸))] 𝑖𝑓 0 <

𝑣𝑙,𝑐

𝑐𝑙,𝑐
< 1 𝑎𝑛𝑑

𝑣𝑙,𝑐

𝑐𝑙,𝑐
𝑔𝑙 + 𝐸 < 𝑔𝑙

𝑡𝑎 − (min(𝑔𝑙 , 𝑡𝑎) 𝑖𝑓 𝑣𝑙 = 0

Equation 43

𝑡𝑎
𝑎: Modified 𝑡𝑎 for non-accommodating PT at semi-actuated coordination

𝐸: Gap out extension (sec)

Note that 𝑡𝑎
𝑎 will not be used for the side street. Also, if the main street is one way, or if

there is no phase for left turn, there is no early green because of left turn gap out and therefore,

Equation 43 will not be applied on 𝑡𝑎.

The optimum method

For any situation, by calculating Equations 27 and 30, the two methods of accommodating and

non-accommodating PT can be compared. The optimum method can be determined by the

following equation:

26 MATHEMATICAL MODEL

𝐴 = [
𝐷𝑎,𝑡
ℎ − 𝐷𝑛,𝑡

ℎ

𝐷𝑎,𝑡
ℎ] × 100

Equation 44

𝐴: Percentage of delay increase after accommodating PT

Therefore, if 𝐴 ≫ 0, non-accommodating PT is preferable. If 𝐴 ≪ 0, accommodating of

PT is preferable; and if 𝐴 ≅ 0, then there is not a significant benefit of one method over the

other one.

27 MODEL VALIDATION

MODEL VALIDATION

A code was written in COM interface of VISSIM (appendix A) to model all combinations of

Table 1. These combinations formed 3,456 scenarios. For each scenario, two methods of

accommodation and non-accommodation of pedestrian timing were performed and delay

increase of accommodating PT over non-accommodating was recorded. If the result is

negative, it means PT accommodation is preferable. If the result is positive, non-

accommodation is preferable. Figure 3 shows a sample of VISSIM simulation output. The

outputs of these scenarios were compared with the ones obtained from the mathematical model.

Table 1: Range of simulation parameters

PARAMETER FROM INTERVAL TO NO OF CASES

Volume 50 50 1200 24

Pedestrian Volume 5 5 30 6

𝑡𝑎, 5 5 30 6

Cycle Length 60 20 120* 4

* for cycle lengths more than 120 sec, side street green time is long enough to accommodate pedestrian timing

Figures 3 and 4 compare one sample of the simulation and mathematical models. It can

be seen that up to 500 vphpl, both the simulation and mathematical models do not show a

significant difference between A and NA (though NA is slightly better in both models). After

500 vphpl, both models show that NA is significantly better than A. However, in the

mathematical model, NA is only better when the transition method is shortening. In the

simulation model, the “best” transition method was selected. For other scenarios, this

comparison shows that the simulation results are close to the mathematical model. However, it

can be noted that the simulation results fluctuate slightly from one volume to its adjacent

volume. For example, in Figure 3, when volume is 200 vphpl and pedestrian volume is 30 pph,

NA is slightly better, but when increasing the volume to 250 vphpl, NA and A are almost equal.

For the comparison of simulation and mathematical models, these fluctuations are ignored.

28 MODEL VALIDATION

Figure 3: Simulation average delay increment after accommodating pedestrian timing, cycle 60 sec, 𝑡𝑎 = 15 sec

Figure 4: Mathematical model delay caused by adding pedestrian timing, cycle 60 sec, 𝑡𝑎 = 15 sec, Ped Vol 30 pph

The distance of intersections in these scenarios was half a mile from each other. To check

if the distance of intersections can affect the results, all 3,456 scenarios were retested by

multiplying the distance of intersections by factors 0.5 and 1.5. The results of these three sets

of scenarios were compared. Figure 5 shows a sample of the results. Figure 6 depicts a sample

of the correlation of two different distance values. From these two figures, it can be seen that

the results of each set is close to other sets. Similar analysis on other results shows that the

distance of intersections does not affect the results significantly.

29 MODEL VALIDATION

Figure 5: Sensitivity Analysis on distance between intersections

Figure 6: Correlation of 0.25 and 0.75 mile for the conditions of Figure 5

-10

0

10

20

30

40

50

60

70

80

90

100

110

0 100 200 300 400 500 600 700 800 900 1000

D
el

ay
 In

cr
ea

se
 (

%
)

Volume (vph)

Average Delay Increment after Accommodating Pedestrian Timing

0.25 0.5 0.75Distance Between Intersections (Mile)

Ped Volume 5 (prs/hr)
𝑡𝑎 5 (sec)
Cycle 60 (sec)

R² = 0.9781

-10

0

10

20

30

40

-10 0 10 20 30 40

30 MODEL SOFTWARE

MODEL SOFTWARE

In this section, software is provided to select the best pedestrian accommodation method. Table

2 shows the inputs required for Equation 44. The design parameters are shown by bold font

and can vary, thus changing the results. For example, the cycle length can affect the probability

of having pedestrian(s) during a cycle, green time intervals, and optimum transition method.

Finding the best value of each of these parameters is very time consuming for practitioners. To

facilitate this procedure, a software has been developed based on the mathematical model

called PeTASC (Pedestrian Timing Accommodation into Signal Coordination) that can be

accessed by scanning the QR code or following the link in Figure 7. Its MATLAB code can be

seen in Appendix B. Figure 8 shows a screen shot of PeTASC. With this software, a user can

enter inputs and choose reasonable parameters for coordinated signals. Most of these design

parameters can be designed in other software (such as Synchro or Vistro) including optimum

cycle length and splits. However, parameters 𝜌 and 𝜇, as well as the best transition method and

the best method for accommodating PT. To narrow down the design range, the transition

method can also be removed from the design parameters because many controllers are now

able to choose the optimum transition method, also called “best way” (also known as smooth,

short way or fast way). If Table 3 is considered as the range of the remaining design parameters,

by calculating 60 cases using PeTASC interface, the best one can be chosen among them.

Figure 9 shows a sample of outputs for choosing the best 𝜌, 𝜇, and PT accommodation method

for given volume and signal parameters. This analysis indicates that for 𝜇 from 0.05 to 0.15,

accommodating PT is preferable over both methods of transition. However, if a bigger amount

of 𝜇 is selected, the shortening transition method reduces delays more so than lengthening and

accommodating PT. PeTASC can analyze methods over other parameters, especially over

volume. In other words, it can determine the volume boundaries that each method can aptly

apply to PT. Figure 10 shows a sample output for given conditions.

https://drive.google.com/open?id=0B4juw5AdxVsYTzN5c3hnVUJmSnc

Figure 7: QR code and link address of PeTASC for download

31 MODEL SOFTWARE

Table 2: Model inputs

VARIABLE SYMBOL
DESIGN

PARAMETER

Volume

Saturated flow rate (vps) 𝑓𝑠 No

Main street volume (vps) 𝑣𝑚 No

Main street left turn volume (vps) 𝑣𝑙 No

Side street i volume (vps) 𝑣𝑠,𝑖 No

Pedestrian volume for crossing main street (pph) 𝑣𝑝 No

The weight of side street volume compared to main street (𝟎 ≤ 𝝆 ≤ 𝟏) 𝝆 Yes

Signal timing

Cycle length (sec) 𝑪 Yes

Main street green time interval of (sec) 𝒈 Yes

Left turn green time interval (sec) 𝒈𝒍 Yes

Side street green time interval (sec) 𝒈𝒔 Yes

Gap out extension (sec) 𝑬 Yes

No. of intersection with pedestrian call 𝑝 No

Required pedestrian time (walk time plus flash do not walk plus clearance time) (sec) 𝑡𝑝 No

The maximum percentage of cycle length that is permit able to add to or to

subtract from cycle length.

𝝁 Yes

Number of coordinated signals 𝑛 Could be

Figure 8: Screen shot of PeTASC

32 MODEL SOFTWARE

Table 3: Range of parameters

DESIGN PARAMETER RANGE INTERVALS
NUMBER OF

CASES

𝜌 (0 ≤ 𝜌 ≤ 1) 0.25 5

𝜇 (0.05 ≤ 𝜇 ≤ 0.3) 0.05 6

PT accommodation method Yes / No - 2

Figure 9: delay caused by adding PT to signal coordination, C: 80 sec; g: 0.5 C; 𝑔𝑙: 0.2 C; ta: 45 sec; E: 3 sec; n: 3; vm:

1200 vph; vs: 0.3 vm; fs: 1.056 vps; vl: 0.1 vm; vp: 45 pph

33 MODEL SOFTWARE

Figure 10: delay caused by adding PT to signal coordination, 𝜇 = 0.2, 𝜌 = 1

Figures 11 to 13 are samples of PeTASC outputs, which show average delay increments

after accommodating pedestrian timing for different additional pedestrian time, cycle length

and volume. These graphs were made based on the mathematical model and can be a reference

for a wide range of conditions. For example, referring to Figure 11, the threshold for

accommodating pedestrian timing is almost 950 vph for all pedestrian volume levels. This

means that when additional pedestrian time (𝑡𝑎) is 35 seconds and cycle length is 160 seconds,

if volume is more than 950 vph, accommodation of 𝑡𝑎 is more beneficial for this condition.

The results are very sensitive to the amount of 𝑡𝑎. For example, Figure 12 diagrams are

referring to the exact condition of Figure 11 except 𝑡𝑎 is 20 seconds more. At this condition for

all vehicle and pedestrian volume levels, accommodating 𝑡𝑎 is more preferable compared to

34 MODEL SOFTWARE

non-accommodating. Figure 13 shows another example of sensitivity of results to 𝑡𝑎. In this

figure, 𝑡𝑎 is equal to 25 seconds and for all vehicle and pedestrian volume levels, non-

accommodating pedestrian timing is preferable.

Figure 11: 𝑡𝑎 analysis over cycle length, pedestrian and vehicle volume, 𝑡𝑎 = 35 𝑠𝑒𝑐

Using similar figures to Figures 11 to 13, the vehicle and pedestrian volume thresholds

for accommodating pedestrian time can be extracted and summarized into reference diagrams

similar to the one shown in Figure 14 for any condition. The left side of each curve at this

figure shows the non-accommodating area and the right side shows the accommodating area.

For example, in Figure 14, if pedestrian volume is five persons per hour and 𝑡𝑎 is 55 seconds,

accommodation of pedestrian timing into signal coordination is more beneficial for volume

more than 400 vph.

35 MODEL SOFTWARE

Figure 12: 𝑡𝑎 analysis over cycle length, pedestrian and vehicle volume, 𝑡𝑎 = 45 𝑠𝑒𝑐

Figure 13: 𝑡𝑎 analysis over cycle length, pedestrian and vehicle volume, 𝑡𝑎 = 25 𝑠𝑒𝑐

36 MODEL SOFTWARE

Figure 14: Volume threshold for accommodating pedestrian timing into signal coordination, cycle length 60 seconds. Left side

of each curve shows not accommodation area and right side accommodation area.

37 SUMMARY

SUMMARY

Accommodating pedestrian timing in coordinated signal systems implies that the cycle length

must be long enough to accommodate the Walk and Flash-Don’t-Walk (called pedestrian

clearance interval) for the side street. The advantage of this treatment is that a signal will always

remain in coordination regardless of whether there is a pedestrian crossing or not. The major

disadvantage is the resulting longer cycle length, which may be operationally inefficient when

vehicular traffic volume is low. Unnecessary long vehicle delays can result. The other

alternative is to not accommodate pedestrian timing, i.e., the side street phase split is shorter

than what is needed for pedestrian crossing. Although this alternative has no pedestrian safety

degradation (i.e., pedestrians still receive the same WALK and Flash-Don’t-Walk times during

a crossing), the signal may go into transition, which will disrupt coordination, negatively

affecting the system efficiency. In order to determine what pedestrian timing alternative is the

best, a mathematical model was provided that relates vehicle volume, pedestrian volume, and

network conditions to the delay caused by adding pedestrian timing.

To facilitate using the mathematical model, a software has been developed based on it

called PeTASC (Pedestrian Timing Accommodation into Signal Coordination) that can be

accessed by scanning the QR code or following the link in Figure 7.

The purpose of this software is to provide practitioners an easy way to determine when

accommodation (A) of pedestrian timing into coordination is preferable over non-

accommodating (NA). With this software, practitioners input cycle length (C), volume (v),

required pedestrian timing (RPT), and other signal parameters. The software will then show

them which plan, A or NA, has lower delay.

To validate the mathematical model and its software, a code was written in COM

interface of VISSIM (appendix A) to model a wide range of vehicle and pedestrian volume

combinations. These combinations formed 3,456 scenarios. For each scenario, two methods of

accommodation and non-accommodation of pedestrian timing were performed. The outputs of

these scenarios were compared with the ones obtained from the mathematical model.

The mathematical model does not consider the distance between intersections as a

significant variable. To check if the distance of intersections can affect the results, all 3,456

scenarios were retested by multiplying the distance of intersections by factors 0.5 and 1.5. The

results of these three sets of scenarios were compared. Analysis on results shows that the

distance of intersections does not affect the results significantly.

38 SUMMARY

39 REFERENCES

REFERENCES

Federal Highway Administration (2008). Traffic Signal Timing Manual, Report FHWA-

HOP-08-024.

Parsonson, P. (1992). Signal Timing Improvement Practices, NCHRP 172,

Transportation Research Board.

Petzold, R. (1977). Urban Intersection Improvements for Pedestrian Safety--Volume III:

Signal Timing for the Pedestrian, FHWA Report RD-77.

Tian, Z. Z., T. Urbanik, K. K. Kacir, M. A. Vandehey, and H. Long (2000). Pedestrian

Timing Treatment for Coordinated Signal Systems. Proc., 2nd International Conference on

Transportation and Traffic Studies, Beijing, China, ASCE, 2000, pp. 533–540.

Tian, Z. and F. Xu (2006). Modeling the Effects of Pedestrians on Intersection Capacity

and Delay with Actuated Signal Control, Proceedings of the 5th International Symposium on

Highway Capacity, Yokohama, Japan, July 2006.

Tian, Z., K. Kacir, M. Vandehay, and H. Long (1999). Signal Timing Strategies in

Dealing with Pedestrian Crossings. In Proc., 69th ITE Annual Meeting, Las Vegas, Nev., Aug.

1999.

Tian, Z., Urbanik, T., Engelbrecht, R., and Balke, K. (2001). Pedestrian Timing

Alternatives and Impacts on Coordinated Signal Systems under Split-Phasing Operations,

Transportation Research Record 1748, pp. 46-54.

Tian, Z. (2004). Pedestrian Timing Treatment for Coordinated Signal Systems,

Proceedings of International Conference on Traffic and Transportation Studies.

Zegeer, C., Cynecki, M., and Opiela, K. (1982). Effect of Pedestrian Signals and Signal

Timing on Pedestrian Accidents, Transportation Research Record 847, pp. 62-72.

Zegeer, C., Cynecki, M., and Opiela, K. (1984). Evaluation of Innovative Pedestrian

Signalization Alternatives, Transportation Research Record 959, pp. 7-18.

40 Appendix A: COM interface C# code

Appendix A: COM interface C# code

Lib File:

using VISSIMLIB;
using VISSIMCOMLIB;

MainFunc:

 public partial class MainWindow : Window
 {
 string InpxFilename;
 string LayxFilename;
 Vissim _m_Vissim;
 int _m_simperiod = 3600;
 int _m_Ped_num=6; //6
 int _m_MainSt_num=10;//10

 public MainWindow()
 {
 InitializeComponent();

 }

 private void _open_file_Click(object sender, RoutedEventArgs e)
 {
 Microsoft.Win32.OpenFileDialog dlg = new Microsoft.Win32.OpenFileDialog();

 // Set filter for file extension and default file extension
 dlg.Filter = "VISSIM Files (*.inpx; *.layx; *.txt)|*.inpx;*.layx;*.txt";
 dlg.Multiselect = false;

 // Display OpenFileDialog by calling ShowDialog method
 Nullable<bool> result = dlg.ShowDialog();

 // Get the selected file name and display in a TextBox
 if (result == true)
 {
 foreach (String file in dlg.FileNames)
 {
 // Create a PictureBox.
 if (file.Contains(".inpx"))
 {
 InpxFilename = file;
 LayxFilename = file.Replace(".inpx", ".layx");
 }

 }

 if (InpxFilename == null)
 {
 MessageBox.Show("Do not add the *.inpx file sucessfully.",
"Important Note");
 return;
 }

 _m_Vissim = new Vissim();

41 Appendix A: COM interface C# code

 // If you have installed muliple Vissim Versions, you have to set the
reference to the Vissim Version you want to open.
 VISSIMCOMFunction.LoadNet(_m_Vissim, InpxFilename);
 VISSIMCOMFunction.LoadLayout(_m_Vissim, LayxFilename);

 _m_simperiod = VISSIMCOMFunction.GetSimPeriod(_m_Vissim);

 MessageBox.Show("Completed!");

 }

 }

 public void SIMRun(int i, int j,int m)
 {
 VISSIMCOMFunction.SetMaxSimSpeed(_m_Vissim);
 VISSIMCOMFunction.RunContinuous(_m_Vissim);
 VISSIMCOMFunction.StopSim(_m_Vissim);
 }

 private void _b_start_Click(object sender, RoutedEventArgs e)
 {
 int count = 0;
 int startvolume_MajorSt = 200;
 if (_UI_method_2.IsChecked == true)
 startvolume_MajorSt = 100;

 for (int i = 0; i < _m_Ped_num; i++)
 {
 for (int j = 0; j < _m_MainSt_num; j++)
 {

 int PedNB = (i + 1) * 5;
 int MajorSt = startvolume_MajorSt + (j * 200);
 int OtherSt = MajorSt * 30 / 100;

 oSheet.Cells[count + 2, 20] = PedNB;
 oSheet.Cells[count + 2, 21] = MajorSt;
 oSheet.Cells[count + 2, 22] = OtherSt;

 count++;

 do
 {
 VISSIMCOMFunction.SetVolume(_m_Vissim, 2, OtherSt);
 }
 while (VISSIMCOMFunction.GetVolume(_m_Vissim,2) != OtherSt);

 do
 {
 VISSIMCOMFunction.SetVolume(_m_Vissim, 8, PedNB);
 }
 while (VISSIMCOMFunction.GetVolume(_m_Vissim,8) != PedNB);

 do
 {
 VISSIMCOMFunction.SetVolume(_m_Vissim, 10, OtherSt);
 }
 while (VISSIMCOMFunction.GetVolume(_m_Vissim,10) != OtherSt);

 do

42 Appendix A: COM interface C# code

 {
 VISSIMCOMFunction.SetVolume(_m_Vissim, 11, MajorSt);
 }
 while (VISSIMCOMFunction.GetVolume(_m_Vissim,11) != MajorSt);

 do
 {
 VISSIMCOMFunction.SetVolume(_m_Vissim, 12, OtherSt);
 }
 while (VISSIMCOMFunction.GetVolume(_m_Vissim,12) != OtherSt);

 SIMRun(PedNB, MajorSt, OtherSt);
 }
 }
 MessageBox.Show("Completed!");
 }

 private void _Exit_Click(object sender, RoutedEventArgs e)
 {
 if (_m_Vissim != null)
 VISSIMCOMFunction.Exit(_m_Vissim);
 this.Close();

 }

 }
}

43 Appendix B: PeTASC MATLAB code

Appendix B: PeTASC MATLAB code

% This function calculates gbji and grji: The time interval at the

beginning
% of green time of main street at Intersection i that vehicles dispatch as
% bunched/random from the first intersection in Cycle i during transition

(sec).
% By Ali Gholami------12/29/2015

function [gb1s,gr1s, gb2s, gr2s, gb1l, gr1l, gb2l, gr2l] = gbrji(i, c, g,

ta, vm, fs, mu)

r = c - g;
betas = ceil(ta/c/mu);
betal = ceil((c-ta)/c/mu);
alphas = -ta / betas;
alphal = (c-ta) / betal;
mus = 1 - ((c + alphas) / c);%the real percentage of cycle length that is

subtracted
mul = ((c + alphal) / c) - 1;%the real percentage of cycle length that is

added
gs = g - mus * g;
gl = g + mul * g;

[L1s,L2s, L1l, L2l] = Lji(i, c, g, ta, mu);
[U1s,U2s, U1l, U2l] = Uji(i, c, g, ta, mu);

gd1s = L1s - U1s;
gd2s = L2s - U2s;
gd1l = L1l - U1l;
gd2l = L2l - U2l;

if (r * vm / fs) < g
 gb = r * vm / fs;
else
 gb = g;
end

gr = g - gb;

%Shortening
if U1s == 0 && gb < gd1s
 gb1s = gb;
elseif U1s == 0 && gb >= gd1s
 gb1s = gd1s;
elseif U1s > 0 && gd1s == g
 gb1s = gb;
elseif U1s > 0 && gd1s <= g && gr >= gd1s
 gb1s = 0;
else
 gb1s = gd1s - gr;
end

if U1s == 0 && gb < gd1s
 gr1s = gd1s - gb;
elseif U1s == 0 && gb >= gd1s
 gr1s = 0;

44 Appendix B: PeTASC MATLAB code

elseif U1s > 0 && gd1s == g
 gr1s = gr;
elseif U1s > 0 && gd1s <= g && gr >= gd1s
 gr1s = gd1s;
else
 gr1s = gr;
end

if U2s == 0 && gb < gd2s
 gb2s = gb;
elseif U2s == 0 && gb >= gd2s
 gb2s = gd2s;
elseif U2s > 0 && gd2s == gs
 gb2s = gb;
elseif U2s > 0 && gd2s <= gs && gr >= gd2s
 gb2s = 0;
else
 gb2s = gd2s - gr;
end

if U2s == 0 && gb < gd2s
 gr2s = gd2s - gb;
elseif U2s == 0 && gb >= gd2s
 gr2s = 0;
elseif U2s > 0 && gd2s == gs
 gr2s = gr;
elseif U2s > 0 && gd2s <= gs && gr >= gd2s
 gr2s = gd2s;
else
 gr2s = gr;
end

% lengthening
if U1l == 0 && gb < gd1l
 gb1l = gb;
elseif U1l == 0 && gb >= gd1l
 gb1l = gd1l;
elseif U1l > 0 && gd1l == g
 gb1l = gb;
elseif U1l > 0 && gd1l <= g && gr >= gd1l
 gb1l = 0;
else
 gb1l = gd1l - gr;
end

if U1l == 0 && gb < gd1l
 gr1l = gd1l - gb;
elseif U1l == 0 && gb >= gd1l
 gr1l = 0;
elseif U1l > 0 && gd1l == g
 gr1l = gr;
elseif U1l > 0 && gd1l <= g && gr >= gd1l
 gr1l = gd1l;
else
 gr1l = gr;
end

if U2l == 0 && gb < gd2l
 gb2l = gb;

45 Appendix B: PeTASC MATLAB code

elseif U2l == 0 && gb >= gd2l
 gb2l = gd2l;
elseif U2l > 0 && gd2l == gl
 gb2l = gb;
elseif U2l > 0 && gd2l <= gl && gr >= gd2l
 gb2l = 0;
else
 gb2l = gd2l - gr;
end

if U2l == 0 && gb < gd2l
 gr2l = gd2l - gb;
elseif U2l == 0 && gb >= gd2l
 gr2l = 0;
elseif U2l > 0 && gd2l == gl
 gr2l = gr;
elseif U2l > 0 && gd2l <= gl && gr >= gd2l
 gr2l = gd2l;
else
 gr2l = gr;
end

46 Appendix B: PeTASC MATLAB code

% This function calculates the number of cycles that go into transition

before another pedestrian call occurs.
% By Ali Gholami------12/29/2015
function [gammas, gammal] = gamma1(c, ta, vp, mu)

betas = ceil(ta/c/mu);
betal = ceil((c-ta)/c/mu);

P1 = 1- exp(-(vp/3600)*c); %Probability of having at least one pedestrian

call during one cycle

if (1 / P1) <= betas
 gammas = ceil(1 / P1); %The number of cycles that go into transition

before another pedestrian call occurs: Shortening method
else
 gammas = betas;
end

if (1 / P1) <= betal
 gammal = ceil(1 / P1); %The number of cycles that go into transition

before another pedestrian call occurs: Lengthening method
else
 gammal = betal;
end

47 Appendix B: PeTASC MATLAB code

% This function calculates hourly delay caused by transition for
% both shortening and lengthening transition methods at Intersection 1
% (intersection with pedestrian call) and its next intersection
% By Ali Gholami------12/29/2015

function [dns_1, dns_2, dns_total, dnl_1, dnl_2, dnl_total] = dn(c, g, gl,

ta, vm, fs, vp, vs, vl, mu, rho, E)

ta1 = ta; % this ta will be used for side street
% Modified t_a for non-accommodating PT at semi-actuated coordination
vlc = vl * c; % Main street left turn volume per cycle
clc = fs * gl; % Capacity of left turn (vehicle per cycle)
if (vlc / clc) >= 1 || ((vlc / clc) * gl + E) >= gl
 ta = ta;
elseif vl == 0
 ta = ta - (min (gl, ta));
elseif ((vlc / clc) < 1 && (vlc / clc) > 0) && ((vlc / clc) * gl + E) < gl
 ta = ta - (min ((gl - ((vlc / clc) * gl) + E), ta));
end

[gammas, gammal] = gamma1(c, ta, vp, mu);

% Calculating delay of one transition period due to non-accommodating PT at

the
% Intersection 2 with shortening and Lengthening transition methods
Zn1cs_1 = 0;
Zn1cs_2 = 0;
Zn1cl_1 = 0;
Zn1cl_2 = 0;

%Shortening
if gammas == 0
 Zn1cs_1 = - (vs*rho*(ta1^2)/2);
 Zn1cs_2 = 0;
else
 for i = 1:gammas
 [L1s,L2s, L1l, L2l] = Lji(i, c, g, ta, mu);
 [U1s,U2s, U1l, U2l] = Uji(i, c, g, ta, mu);
 [gb1s,gr1s, gb2s, gr2s, gb1l, gr1l, gb2l, gr2l] = gbrji(i, c, g,

ta, vm, fs, mu);
 Zn1cs_1 = Zn1cs_1 + (gb1s*fs*(L1s+U1s+gr1s)/2) +...
 (gr1s*vm*(L1s+U1s-gb1s)/2); %Delay of one
 %transition period due to non-accommodating PT at the Intersection

1 with shortening transition method
 Zn1cs_2 = Zn1cs_2 + (gb2s*fs*(L2s+U2s+gr2s)/2) +...
 (gr2s*vm*(L2s+U2s-gb2s)/2);
 end
 Zn1cs_1 = Zn1cs_1 - (vs*rho*(ta^2)/2);
end

%Lengthening
if gammal == 0
 Zn1cl_1 = - (vs*rho*(ta1^2)/2);
 Zn1cl_2 = 0;
else

48 Appendix B: PeTASC MATLAB code

 for i = 1:gammal
 [L1s,L2s, L1l, L2l] = Lji(i, c, g, ta, mu);
 [U1s,U2s, U1l, U2l] = Uji(i, c, g, ta, mu);
 [gb1s,gr1s, gb2s, gr2s, gb1l, gr1l, gb2l, gr2l] = gbrji(i, c, g,

ta, vm, fs, mu);
 Zn1cl_1 = Zn1cl_1 + (gb1l*fs*(L1l+U1l+gr1l)/2) +...
 (gr1l*vm*(L1l+U1l-gb1l)/2); %Delay of one
 %transition period due to non-accommodating PT at the Intersection

1 with lengthening transition method
 Zn1cl_2 = Zn1cl_2 + (gb2l*fs*(L2l+U2l+gr2l)/2) +...
 (gr2l*vm*(L2l+U2l-gb2l)/2);
 end
 Zn1cl_1 = Zn1cl_1 - (vs*rho*(ta1^2)/2);
end

[nts, ntl] = nt(c, ta, vp, mu);%Number of transition periods per hour for

both shortening and lengthening transition methods
if gammas == 0
 dns_1 = Zn1cs_1;
 dns_2 = 0;
 dns_total = 0;
else
 dns_1 = nts * Zn1cs_1; %hourly delay caused by transition for

shortening transition methods at the Intersection 1
 dns_2 = nts * Zn1cs_2; %hourly delay caused by transition for

shortening transition methods at the Intersection 2
 dns_total = dns_1 + dns_2; %Total Shortening
end

if gammal == 0
 dnl_1 = Zn1cl_1;
 dnl_2 = 0;
 dnl_total = 0;
else
 dnl_1 = ntl * Zn1cl_1; %hourly delay caused by transition for

lengthening transition methods at the Intersection 1
 dnl_2 = ntl * Zn1cl_2; %hourly delay caused by transition for

lengthening transition methods at the Intersection 2
 dnl_total = dnl_1 + dnl_2; %Total Lengthening
end

49 Appendix B: PeTASC MATLAB code

% This function calculates hourly delay caused by accommodating pedestrian
% timing
% By Ali Gholami------12/30/2015

function [da1, dan, da_total] = da(c, n, g, ta, vm, fs, vp, vs, rho)

P1 = 1- exp(-(vp/3600)*c); %Probability of having at least one pedestrian

call during one cycle
ga = g - ta;
greq = vm * c / fs;
ta = ta * P1;

% First intersection
da1 = ta^2 * (vm - (rho * vs)) * 1800 / c; %Delay caused by adding t_a to

side street green time (veh-sec) at Intersection 1.

%Next intersections
dan = 0;
for i = 2:n
 if greq <= ga
 dan = dan + (ta^2 * (0 - (rho * vs)) * 1800 / c);
 else
 dan = dan + ((min (ta, (greq - ga)))^2 * (fs - (rho * vs)) * 1800 /

c);
 end
end

da_total = da1 + dan;

50 Appendix B: PeTASC MATLAB code

% This function calculates Average cycle length during one hour (sec) for
% both shortening and lengthening transition methods
% By Ali Gholami------12/29/2015

function [cas, cal] = ca(c, ta, vp, mu)
% clear
% c = 70;
% ta = 40;
% vp = 5;
% mu = .1;

betas = ceil(ta/c/mu);
betal = ceil((c-ta)/c/mu);
cs = c - ta/betas;
cl = c + ta/betal;
P1 = 1- exp(-(vp/3600)*c); %Probability of having at least one pedestrian

call during one cycle
[gammas, gammal] = gamma1(c, ta, vp, mu);
%Average cycle length during one hour with shortening transition method

(sec)
if 1/P1 <= betas
 cas = ((c+ta)+((gammas-1)*(cs)))/gammas;
else
 cas = (((c+ta)+((betas-1)*(cs)))/betas)*P1*betas + c*(1-(P1*betas));
end
%Average cycle length during one hour with lengthening transition method

(sec)
if 1/P1 <= betal
 cal = ((c+ta)+((gammal-1)*(cl)))/gammal;
else
 cal = (((c+ta)+((betal-1)*(cl)))/betal)*P1*betal + c*(1-(P1*betal));
end

51 Appendix B: PeTASC MATLAB code

% This function calculates Number of transition periods per hour for
% both shortening and lengthening transition methods
% By Ali Gholami------12/29/2015

function [nts, ntl] = nt(c, ta, vp, mu)

betas = ceil(ta/c/mu);
betal = ceil((c-ta)/c/mu);
P1 = 1- exp(-(vp/3600)*c); %Probability of having at least one pedestrian

call during one cycle
[gammas, gammal] = gamma1(c, ta, vp, mu);
%Average cycle length during one hour with (sec)
[cas, cal] = ca(c, ta, vp, mu);

if 1/P1 <= betas
 nts = 3600 / cas / gammas;
else
 nts = 3600 / cas * P1;
end
if 1/P1 <= betal
 ntl = 3600 / cal / gammal;
else
 ntl = 3600 / cal * P1;
end

52 Appendix B: PeTASC MATLAB code

% This function calculates Lj^i: The time distance of the lower bound of
% delayed green to beginning of the next green time at Intersection j in

Cycle i during transition
% By Ali Gholami------12/29/2015

function [L1s,L2s, L1l, L2l] = Lji(i, c, g, ta, mu)

r = c - g;
betas = ceil(ta/c/mu);
betal = ceil((c-ta)/c/mu);
alphas = (-ta) / betas;
alphal = (c-ta) / betal;
mus = 1 - ((c + alphas) / c);%the real percentage of cycle length that is

subtracted
mul = ((c + alphal) / c) - 1;%the real percentage of cycle length that is

added
rs = r - mus * r;
rl = r + mul * r;

if (ta + (i - 1) * alphas) <= rs
 L1s = ta + (i - 1) * alphas;
else
 L1s = rs;
end

if (ta + (i - 1) * alphal) <= rl
 L1l = ta + (i - 1) * alphal;
else
 L1l = rl;
end

if (c - ta - (i - 1) * alphas) <= r
 L2s = c - ta - (i - 1) * alphas;
else
 L2s = r;
end

if (c - ta - (i - 1) * alphal) <= r
 L2l = c - ta - (i - 1) * alphal;
else
 L2l = r;
end

53 Appendix B: PeTASC MATLAB code

% This function calculates Uj^i: The time distance of the upper bound of
% delayed green to beginning of the next green time at Intersection j in

Cycle i during transition
% By Ali Gholami------12/29/2015

function [U1s,U2s, U1l, U2l] = Uji(i, c, g, ta, mu)

betas = ceil(ta/c/mu);
betal = ceil((c-ta)/c/mu);
alphas = (-ta) / betas;
alphal = (c-ta) / betal;
mus = 1 - ((c + alphas) / c);%the real percentage of cycle length that is

subtracted
mul = ((c + alphal) / c) - 1;%the real percentage of cycle length that is

added
gs = g - mus * g;
gl = g + mul * g;

if (ta + (i - 1) * alphas) > g
 U1s = ta + (i - 1) * alphas - g;
else
 U1s = 0;
end

if (ta + (i - 1) * alphal) > g
 U1l = ta + (i - 1) * alphal - g;
else
 U1l = 0;
end

if (c - ta - (i - 1) * alphas -g) > gs
 U2s = c - ta - (i - 1) * alphas -g;
else
 U2s = 0;
end

if (c - ta - (i - 1) * alphal -g) > gl
 U2l = c - ta - (i - 1) * alphal -g;
else
 U2l = 0;
end

54 Appendix B: PeTASC MATLAB code

% This function compares hourly delay caused by accommodating pedestrian
% timing and non-accommodating PT
% By Ali Gholami------12/30/2015

function [y1, y2, y3, comparison, which_method] = compare2 (c, gpercent,

glpercent, ta, vp, vlpercent, vspercent, E, n, fs, vmto)

g = gpercent * c;
gl = glpercent * c; % Left turn green time interval (sec)
vm = 400 / 3600;
vs = vmto * vspercent ;
fs = fs / 3600;
vl = vmto * vlpercent;

comparison = [];
which_method = [];

for tt = 0.05:0.05:.3
 mu = tt;
 y1 = [];
 y2 = [];
 y3 = [];
 for ii = 0:.25:1
 rho = ii;

 [dns_1, dns_2, dns_total, dnl_1, dnl_2, dnl_total] = dn(c, g, gl,

ta, vm, fs, vp, vs, vl, mu, rho, E);
 [da1, dan, da_total] = da(c, n, g, ta, vm, fs, vp, vs, rho);
 besttransition = min (dns_total, dnl_total);
 accomm_delay_increase = (da_total - besttransition)/da_total*100;
 a = [ta; c; vm*3600; vs*3600; vl*3600; vp; mu; rho; dns_total;

dnl_total; da_total];
 b = [ta; c; vm*3600; vs*3600; vl*3600; vp; mu; rho;

accomm_delay_increase];
 comparison = [comparison, a]; % Comparison of shortening,

lengthening and accommodating
 which_method = [which_method, b];
 y1 = [y1, dns_total];
 y2 = [y2, dnl_total];
 y3 = [y3, da_total];
 end
 x=0:.25:1;
 figure
 plot(x, y1,x,y2,'-.k',x,y3,'--r')
 legend('Shortening','Lengthening','Accommodating PT')
 xlabel('\rho (weight of side street volume)')
 ylabel('Delay caused by adding PT (veh-sec)')
 title ({['Maximum Percentage Permitted to']; ['Add to/Subtract from

Cycle Length, \mu = ', num2str(mu*100), '%']})
end

55 Appendix B: PeTASC MATLAB code

% This function compares hourly delay caused by accommodating pedestrian
% timing and non-accommodating PT
% By Ali Gholami------12/30/2015

function [y1, y2, y3, comparison, which_method] = compare3 (c, gpercent,

glpercent, ta, vp, vlpercent, vspercent, mu, rho, E, n, fs, vmfrom,

vminterval, vmto)

fs = fs / 3600;
comparison = [];
which_method = [];
y1 = [];
y2 = [];
y3 = [];
for ii = vmfrom:vminterval:vmto % Main treet volume
 vm = ii / 3600;
 vs = ii * vspercent / 3600;
 vl = ii * vlpercent / 3600;

 g = gpercent * c;
 gl = glpercent * c;

 [dns_1, dns_2, dns_total, dnl_1, dnl_2, dnl_total] = dn(c, g, gl, ta,

vm, fs, vp, vs, vl, mu, rho, E);
 [da1, dan, da_total] = da(c, n, g, ta, vm, fs, vp, vs, rho);
 besttransition = min (dns_total, dnl_total);
 accomm_delay_increase = (da_total - besttransition)/da_total*100;
 a = [ta; c; vm*3600; vs*3600; vl*3600; vp; mu; rho; dns_total;

dnl_total; da_total];
 b = [ta; c; vm*3600; vs*3600; vl*3600; vp; mu; rho;

accomm_delay_increase];
 comparison = [comparison, a]; % Comparison of shortening, lengthening

and accommodating
 which_method = [which_method, b];

 y1 = [y1, dns_total];
 y2 = [y2, dnl_total];
 y3 = [y3, da_total];

end

56 Appendix B: PeTASC MATLAB code

% This function compares hourly delay caused by accommodating pedestrian
% timing and non-accommodating PT
% By Ali Gholami------12/30/2015

function [y1, comparison, which_method] = compare4 (gpercent, glpercent,

vlpercent, vspercent, mu, rho, E, n, fs, vmfrom, vminterval, vmto)

comparison = [];
which_method = [];
fs = fs / 3600;

for kk = 60:20:200
 c = kk;

 for tt = 5:10:55
 ta = tt;
 y1 = [];
 for jj = 5:10:65 % Pedestrian
 vp = jj;
 best_tran_matrix = [];
 for ii = vmfrom:vminterval:vmto % Main treet volume
 vm = ii / 3600;
 vs = ii * vspercent / 3600;

 vl = ii * vlpercent / 3600;
 g = gpercent * c;
 gl = glpercent * c;

 [dns_1, dns_2, dns_total, dnl_1, dnl_2, dnl_total] = dn(c,

g, gl, ta, vm, fs, vp, vs, vl, mu, rho, E);
 [da1, dan, da_total] = da(c, n, g, ta, vm, fs, vp, vs,

rho);
 besttransition = min (dns_total, dnl_total);
 accomm_delay_increase = (da_total -

besttransition)/da_total*100;
 best_tran_matrix = [best_tran_matrix,

accomm_delay_increase];
 a = [ta; c; vm*3600; vs*3600; vl*3600; vp; mu; rho;

dns_total; dnl_total; da_total];
 b = [ta; c; vm*3600; vs*3600; vl*3600; vp; mu; rho;

accomm_delay_increase];
 comparison = [comparison, a]; % Comparison of shortening,

lengthening and accommodating
 which_method = [which_method, b];

 end
 y1 = [y1; best_tran_matrix];

 end
 x=vmfrom:vminterval:vmto;
 curve1 = fit(x',(y1(1,:))','smoothingspline');
 curve2 = fit(x',(y1(2,:))','smoothingspline');
 curve3 = fit(x',(y1(3,:))','smoothingspline');
 curve4 = fit(x',(y1(4,:))','smoothingspline');
 curve5 = fit(x',(y1(5,:))','smoothingspline');
 curve6 = fit(x',(y1(6,:))','smoothingspline');
 curve7 = fit(x',(y1(7,:))','smoothingspline');
 figure
 plot(curve1)
 hold on

57 Appendix B: PeTASC MATLAB code

 plot(curve2, '--g')
 plot(curve3, ':k')
 plot(curve4, '-.b')
 plot(curve5, 'k')
 plot(curve6, '--c')
 plot(curve7, ':r')
 %plot(x, y1(1,:),x, y1(2,:),x, y1(3,:),x, y1(4,:),x, y1(5,:),x,

y1(6,:),x, y1(7,:))
 legend('Ped Vol. = 5','Ped Vol. = 15','Ped Vol. = 25', 'Ped Vol. =

35','Ped Vol. = 45','Ped Vol. = 55','Ped Vol. = 65','Location','southeast')
 xlabel({'MAIN STREET VOLUME (VPH)'})
 ylabel({'AVERAGE DELAY INCREMENT'; 'AFTER ACCOMMODATING PEDESTRIAN

TIMING (%)'})
 title ({['ADDITIONAL PEDESTRIAN TIME (t_{a}) = ', num2str(ta)];

['CYCLE LENGTH = ', num2str(c)]})

 end
end

58 Appendix B: PeTASC MATLAB code

function varargout = PeTASC(varargin)
% PETASC MATLAB code for PeTASC.fig
% PETASC, by itself, creates a new PETASC or raises the existing
% singleton*.
%
% H = PETASC returns the handle to a new PETASC or the handle to
% the existing singleton*.
%
% PETASC('CALLBACK',hObject,eventData,handles,...) calls the local
% function named CALLBACK in PETASC.M with the given input arguments.
%
% PETASC('Property','Value',...) creates a new PETASC or raises the
% existing singleton*. Starting from the left, property value pairs

are
% applied to the GUI before PeTASC_OpeningFcn gets called. An
% unrecognized property name or invalid value makes property

application
% stop. All inputs are passed to PeTASC_OpeningFcn via varargin.
%
% *See GUI Options on GUIDE's Tools menu. Choose "GUI allows only one
% instance to run (singleton)".
%
% See also: GUIDE, GUIDATA, GUIHANDLES

% Edit the above text to modify the response to help PeTASC

% Last Modified by GUIDE v2.5 06-Jan-2016 15:58:31

% Begin initialization code - DO NOT EDIT
gui_Singleton = 1;
gui_State = struct('gui_Name', mfilename, ...
 'gui_Singleton', gui_Singleton, ...
 'gui_OpeningFcn', @PeTASC_OpeningFcn, ...
 'gui_OutputFcn', @PeTASC_OutputFcn, ...
 'gui_LayoutFcn', [] , ...
 'gui_Callback', []);
if nargin && ischar(varargin{1})
 gui_State.gui_Callback = str2func(varargin{1});
end

if nargout
 [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:});
else
 gui_mainfcn(gui_State, varargin{:});
end
% End initialization code - DO NOT EDIT

% --- Executes just before PeTASC is made visible.
function PeTASC_OpeningFcn(hObject, eventdata, handles, varargin)
% This function has no output args, see OutputFcn.
% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% varargin command line arguments to PeTASC (see VARARGIN)

% Choose default command line output for PeTASC
handles.output = hObject;

% Update handles structure

59 Appendix B: PeTASC MATLAB code

guidata(hObject, handles);

% UIWAIT makes PeTASC wait for user response (see UIRESUME)
% uiwait(handles.figure1);

% --- Outputs from this function are returned to the command line.
function varargout = PeTASC_OutputFcn(hObject, eventdata, handles)
% varargout cell array for returning output args (see VARARGOUT);
% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Get default command line output from handles structure
varargout{1} = handles.output;

% --- Executes on button press in pushbutton1.
function pushbutton1_Callback(hObject, eventdata, handles)
% hObject handle to pushbutton1 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
c = str2num(get(handles.edit1,'String'));
gpercent = str2num(get(handles.edit2,'String'));
glpercent = str2num(get(handles.edit3,'String'));
ta = str2num(get(handles.edit4,'String'));
vp = str2num(get(handles.edit5,'String'));
vlpercent = str2num(get(handles.edit6,'String'));
vspercent = str2num(get(handles.edit7,'String'));
mu = str2num(get(handles.edit8,'String'));
rho = str2num(get(handles.edit9,'String'));
E = str2num(get(handles.edit10,'String'));
n = str2num(get(handles.edit11,'String'));
fs = str2num(get(handles.edit12,'String'));
vmfrom = str2num(get(handles.edit13,'String'));
vminterval = str2num(get(handles.edit14,'String'));
vmto = str2num(get(handles.edit15,'String'));

[y1, y2, y3, comparison, which_method] = compare3 (c, gpercent, glpercent,

ta, vp, vlpercent, vspercent, mu, rho, E, n, fs, vmfrom, vminterval, vmto)
x=vmfrom:vminterval:vmto;
% figure
% plot(x, y1,x,y2,x,y3)
% legend('Shortening','Lengthening','Accommodating PT')
% xlabel('Volume (vehicle per approach')
% ylabel('Delay caused by adding PT (veh-sec)')
% y=myfunction(x);
plot(handles.axes1,x, y1,x,y2,'-.k',x,y3, '--r');
legend('Shortening','Lengthening','Accommodating PT')
xlabel('Volume (vehicle per approach)')
ylabel('Delay caused by adding PT (veh-sec)')
title ({'COMPARISON OF PEDESTRIAN TIMING'; 'ACCOMMODATION METHODS'})
% figure(1);
% plot(x,y);

function edit1_Callback(hObject, eventdata, handles)
% hObject handle to edit1 (see GCBO)

60 Appendix B: PeTASC MATLAB code

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String') returns contents of edit1 as text
% str2double(get(hObject,'String')) returns contents of edit1 as a

double

% --- Executes during object creation, after setting all properties.
function edit1_CreateFcn(hObject, eventdata, handles)
% hObject handle to edit1 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'),

get(0,'defaultUicontrolBackgroundColor'))
 set(hObject,'BackgroundColor','white');
end

function edit2_Callback(hObject, eventdata, handles)
% hObject handle to edit2 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String') returns contents of edit2 as text
% str2double(get(hObject,'String')) returns contents of edit2 as a

double

% --- Executes during object creation, after setting all properties.
function edit2_CreateFcn(hObject, eventdata, handles)
% hObject handle to edit2 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'),

get(0,'defaultUicontrolBackgroundColor'))
 set(hObject,'BackgroundColor','white');
end

function edit3_Callback(hObject, eventdata, handles)
% hObject handle to edit3 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String') returns contents of edit3 as text
% str2double(get(hObject,'String')) returns contents of edit3 as a

double

61 Appendix B: PeTASC MATLAB code

% --- Executes during object creation, after setting all properties.
function edit3_CreateFcn(hObject, eventdata, handles)
% hObject handle to edit3 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'),

get(0,'defaultUicontrolBackgroundColor'))
 set(hObject,'BackgroundColor','white');
end

function edit4_Callback(hObject, eventdata, handles)
% hObject handle to edit4 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String') returns contents of edit4 as text
% str2double(get(hObject,'String')) returns contents of edit4 as a

double

% --- Executes during object creation, after setting all properties.
function edit4_CreateFcn(hObject, eventdata, handles)
% hObject handle to edit4 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'),

get(0,'defaultUicontrolBackgroundColor'))
 set(hObject,'BackgroundColor','white');
end

function edit5_Callback(hObject, eventdata, handles)
% hObject handle to edit5 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String') returns contents of edit5 as text
% str2double(get(hObject,'String')) returns contents of edit5 as a

double

% --- Executes during object creation, after setting all properties.
function edit5_CreateFcn(hObject, eventdata, handles)
% hObject handle to edit5 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.

62 Appendix B: PeTASC MATLAB code

if ispc && isequal(get(hObject,'BackgroundColor'),

get(0,'defaultUicontrolBackgroundColor'))
 set(hObject,'BackgroundColor','white');
end

function edit6_Callback(hObject, eventdata, handles)
% hObject handle to edit6 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String') returns contents of edit6 as text
% str2double(get(hObject,'String')) returns contents of edit6 as a

double

% --- Executes during object creation, after setting all properties.
function edit6_CreateFcn(hObject, eventdata, handles)
% hObject handle to edit6 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'),

get(0,'defaultUicontrolBackgroundColor'))
 set(hObject,'BackgroundColor','white');
end

function edit7_Callback(hObject, eventdata, handles)
% hObject handle to edit7 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String') returns contents of edit7 as text
% str2double(get(hObject,'String')) returns contents of edit7 as a

double

% --- Executes during object creation, after setting all properties.
function edit7_CreateFcn(hObject, eventdata, handles)
% hObject handle to edit7 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'),

get(0,'defaultUicontrolBackgroundColor'))
 set(hObject,'BackgroundColor','white');
end

function edit8_Callback(hObject, eventdata, handles)

63 Appendix B: PeTASC MATLAB code

% hObject handle to edit8 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String') returns contents of edit8 as text
% str2double(get(hObject,'String')) returns contents of edit8 as a

double

% --- Executes during object creation, after setting all properties.
function edit8_CreateFcn(hObject, eventdata, handles)
% hObject handle to edit8 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'),

get(0,'defaultUicontrolBackgroundColor'))
 set(hObject,'BackgroundColor','white');
end

function edit9_Callback(hObject, eventdata, handles)
% hObject handle to edit9 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String') returns contents of edit9 as text
% str2double(get(hObject,'String')) returns contents of edit9 as a

double

% --- Executes during object creation, after setting all properties.
function edit9_CreateFcn(hObject, eventdata, handles)
% hObject handle to edit9 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'),

get(0,'defaultUicontrolBackgroundColor'))
 set(hObject,'BackgroundColor','white');
end

function edit10_Callback(hObject, eventdata, handles)
% hObject handle to edit10 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String') returns contents of edit10 as text
% str2double(get(hObject,'String')) returns contents of edit10 as a

double

64 Appendix B: PeTASC MATLAB code

% --- Executes during object creation, after setting all properties.
function edit10_CreateFcn(hObject, eventdata, handles)
% hObject handle to edit10 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'),

get(0,'defaultUicontrolBackgroundColor'))
 set(hObject,'BackgroundColor','white');
end

function edit11_Callback(hObject, eventdata, handles)
% hObject handle to edit11 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String') returns contents of edit11 as text
% str2double(get(hObject,'String')) returns contents of edit11 as a

double

% --- Executes during object creation, after setting all properties.
function edit11_CreateFcn(hObject, eventdata, handles)
% hObject handle to edit11 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'),

get(0,'defaultUicontrolBackgroundColor'))
 set(hObject,'BackgroundColor','white');
end

function edit12_Callback(hObject, eventdata, handles)
% hObject handle to edit12 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String') returns contents of edit12 as text
% str2double(get(hObject,'String')) returns contents of edit12 as a

double

% --- Executes during object creation, after setting all properties.
function edit12_CreateFcn(hObject, eventdata, handles)
% hObject handle to edit12 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called

% Hint: edit controls usually have a white background on Windows.

65 Appendix B: PeTASC MATLAB code

% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'),

get(0,'defaultUicontrolBackgroundColor'))
 set(hObject,'BackgroundColor','white');
end

function edit13_Callback(hObject, eventdata, handles)
% hObject handle to edit15 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String') returns contents of edit15 as text
% str2double(get(hObject,'String')) returns contents of edit15 as a

double

% --- Executes during object creation, after setting all properties.
function edit13_CreateFcn(hObject, eventdata, handles)
% hObject handle to edit15 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'),

get(0,'defaultUicontrolBackgroundColor'))
 set(hObject,'BackgroundColor','white');
end

function edit14_Callback(hObject, eventdata, handles)
% hObject handle to edit14 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String') returns contents of edit14 as text
% str2double(get(hObject,'String')) returns contents of edit14 as a

double

% --- Executes during object creation, after setting all properties.
function edit14_CreateFcn(hObject, eventdata, handles)
% hObject handle to edit14 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'),

get(0,'defaultUicontrolBackgroundColor'))
 set(hObject,'BackgroundColor','white');
end

66 Appendix B: PeTASC MATLAB code

function edit15_Callback(hObject, eventdata, handles)
% hObject handle to edit15 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String') returns contents of edit15 as text
% str2double(get(hObject,'String')) returns contents of edit15 as a

double

% --- Executes during object creation, after setting all properties.
function edit15_CreateFcn(hObject, eventdata, handles)
% hObject handle to edit15 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'),

get(0,'defaultUicontrolBackgroundColor'))
 set(hObject,'BackgroundColor','white');
end

function edit16_Callback(hObject, eventdata, handles)
% hObject handle to edit14 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String') returns contents of edit14 as text
% str2double(get(hObject,'String')) returns contents of edit14 as a

double

% --- Executes during object creation, after setting all properties.
function edit16_CreateFcn(hObject, eventdata, handles)
% hObject handle to edit14 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'),

get(0,'defaultUicontrolBackgroundColor'))
 set(hObject,'BackgroundColor','white');
end

function edit17_Callback(hObject, eventdata, handles)
% hObject handle to edit13 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String') returns contents of edit13 as text
% str2double(get(hObject,'String')) returns contents of edit13 as a

double

67 Appendix B: PeTASC MATLAB code

% --- Executes during object creation, after setting all properties.
function edit17_CreateFcn(hObject, eventdata, handles)
% hObject handle to edit13 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'),

get(0,'defaultUicontrolBackgroundColor'))
 set(hObject,'BackgroundColor','white');
end

% --- Executes on button press in pushbutton2.
function pushbutton2_Callback(hObject, eventdata, handles)
% hObject handle to pushbutton2 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
c = str2num(get(handles.edit1,'String'));
gpercent = str2num(get(handles.edit2,'String'));
glpercent = str2num(get(handles.edit3,'String'));
ta = str2num(get(handles.edit4,'String'));
vp = str2num(get(handles.edit5,'String'));
vlpercent = str2num(get(handles.edit6,'String'));
vspercent = str2num(get(handles.edit7,'String'));
mu = str2num(get(handles.edit8,'String'));
rho = str2num(get(handles.edit9,'String'));
E = str2num(get(handles.edit10,'String'));
n = str2num(get(handles.edit11,'String'));
fs = str2num(get(handles.edit12,'String'));
vmfrom = str2num(get(handles.edit13,'String'));
vminterval = str2num(get(handles.edit14,'String'));
vmto = str2num(get(handles.edit15,'String'));

[y1, y2, y3, comparison, which_method] = compare2 (c, gpercent, glpercent,

ta, vp, vlpercent, vspercent, E, n, fs, vmto)

% x=vmfrom:vminterval:vmto;
% figure
% plot(x, y1,x,y2,x,y3)
% legend('Shortening','Lengthening','Accommodating PT')
% xlabel('Volume (vehicle per approach')
% ylabel('Delay caused by adding PT (veh-sec)')
% y=myfunction(x);
% plot(handles.axes1,x, y1,x,y2,x,y3);
% legend('Shortening','Lengthening','Accommodating PT')
% xlabel('Volume (vehicle per approach)')
% ylabel('Delay caused by adding PT (veh-sec)')
% title ({'COMPARISON OF PEDESTRIAN TIMING'; 'ACCOMMODATION METHODS'})
% figure(1);
% plot(x,y);

% --- Executes on button press in pushbutton3.
function pushbutton3_Callback(hObject, eventdata, handles)
% hObject handle to pushbutton3 (see GCBO)

68 Appendix B: PeTASC MATLAB code

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
c = str2num(get(handles.edit1,'String'));
gpercent = str2num(get(handles.edit2,'String'));
glpercent = str2num(get(handles.edit3,'String'));
ta = str2num(get(handles.edit4,'String'));
vp = str2num(get(handles.edit5,'String'));
vlpercent = str2num(get(handles.edit6,'String'));
vspercent = str2num(get(handles.edit7,'String'));
mu = str2num(get(handles.edit8,'String'));
rho = str2num(get(handles.edit9,'String'));
E = str2num(get(handles.edit10,'String'));
n = str2num(get(handles.edit11,'String'));
fs = str2num(get(handles.edit12,'String'));
vmfrom = str2num(get(handles.edit13,'String'));
vminterval = str2num(get(handles.edit14,'String'));
vmto = str2num(get(handles.edit15,'String'));

[y1, comparison, which_method] = compare4 (gpercent, glpercent, vlpercent,

vspercent, mu, rho, E, n, fs, vmfrom, vminterval, vmto)

