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1 DISCLAIMER 

DISCLAIMER 

The contents of this report reflect the views of the authors, who are responsible for the facts 

and accuracy of the information presented herein. This document is disseminated under the 

sponsorship of the U.S. Department of Transportation’s University Transportation Centers 

Program, in the interest of information exchange. The U.S. Government assumes no liability 

for the contents or use thereof.  

 

  



 

 
 

2 EXECUTIVE SUMMARY 

EXECUTIVE SUMMARY 

The purpose of this research is to study how pedestrian crossing timing should be considered 

in coordinated signal operations. A practical guideline needs to be developed to determine 

when accommodation (A) of pedestrian timing into coordination is preferable over non-

accommodating (NA). With this guideline, practitioners input cycle length (C), volume (v), 

required pedestrian timing (RPT), and other signal parameters. The guideline will lead to a 

recommendation on whether A or NA should be used based on arterial vehicle delay. As part 

of the guideline development, a mathematical model was developed and validated by 

simulating 3,456 scenarios in VISSIM traffic simulation. Then, a software tool was created 

based on the mathematical model, named PeTASC (Pedestrian Timing Accommodation into 

Signal Coordination). A link is provided to download this free software. PeTASC can be used 

as a reference for an appropriate pedestrian timing design. This software can help practitioners 

design a better coordination plan and as a result, reduce arterial delay.  

Keywords: Pedestrian timing accommodation; signal coordination; transition methods, 

PeTASC 
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4 GLOSSARY OF ACRONYMS 

GLOSSARY OF ACRONYMS 

CATER: Center for Advanced Transportation Education and Research 

GUI: Graphical User Interface 

ITE: Institute of Transportation Engineers 

NDOT: Nevada Department of Transportation 

A: Accommodating Pedestrian Timing 

NA: Not-accommodating Pedestrian Timing 
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8 INTRODUCTION 

INTRODUCTION 

The majority of pedestrian accidents occur at signalized intersections. Increasing mobility and 

safety for pedestrians has been a major initiative, particularly in light of the recent federal focus 

on the Americans with Disability Act (ADA). The Manual on Uniform Traffic Control Devices 

(MUTCD) has adopted a new standard for determining pedestrian clearance times when 

crossing signalized intersections, where pedestrian walking speed is decreased from the 

previously adopted 4 feet per second to 3.5 feet per second. This revised standard will yield 

longer pedestrian crossing intervals, which can negatively affect signal system efficiency and 

increase congestion. Therefore, the intent of providing pedestrian safety may be compromised 

by increased driver frustration and vehicle collision hazards. The impact could be more 

dramatic for coordinated signal systems where a choice must be made among two pedestrian 

handling alternatives while developing coordinated signal timing plans: non-accommodating 

or accommodating pedestrian timing (e.g., using a longer cycle length). . These two alternatives 

affect coordinated signal systems in different ways. When pedestrian timing is accommodated, 

longer cycle length is generally needed. A longer cycle length results in longer delays under 

low volume conditions. On the other hand, when pedestrian timing is not accommodated due 

to use of a shorter cycle length, disruption to coordination can occur if a pedestrian crossing 

causes a signal to go into transition. In order to achieve optimal system performance, the 

conditions for when one alternative is preferred over another must be clearly identified, based 

on which guidelines can be developed for practicing signal engineers. Currently, such 

guidelines do not exist in published literature.  

The primary objectives of this research are: (1) to address how pedestrian volume levels, 

pedestrian timing, signal transition methods, signal splits, number of intersections, weight of 

the side street (compared to the main street) and cycle length affect vehicle delay in a context 

of coordinated operation; and (2) to develop a guideline for selecting the appropriate pedestrian 

timing alternative for the best system performance. Due to the wide range of parameters 

affecting the results, this guideline is provided as a software. 

  



 

 
 

9 LITERATURE REVIEW 

LITERATURE REVIEW 

Pedestrian crossing and handling alternatives at signalized intersections often involve 

conflicting objectives and need a balanced consideration of both safety and efficiency. 

Additionally, operational strategies should also target both pedestrian service quality and 

vehicular service quality. For coordinated signal systems, accommodating pedestrian timing in 

the signal timing plans could provide improved service to pedestrians while presenting 

negligible impacts on vehicular traffic, especially when longer signal cycle needs are driven by 

vehicular traffic demands. However, when vehicle and pedestrian volumes are low, 

accommodating pedestrians may require an unnecessary long cycle length, which can result in 

long delays and driver frustration. Under what conditions pedestrian timing should be 

accommodated and how it impacts the overall system efficiency has been a long debating 

subject among practicing traffic engineers. Discussions on this topic can be found in several 

documents (FHWA, 2008; Parsonson, 1992; Zegeer et al., 1982 and 1984; Petzold, 1997); 

however, limited guidelines are provided on how to select a pedestrian timing alternative under 

certain traffic conditions. Tian et al. (2001 and 2004) have conducted research on this topic; 

however, their findings were limited to some empirical evidence without robust methodologies 

being developed or comprehensively tested in the field. The real research issue lies in how 

different levels of pedestrian volumes affect the two pedestrian timing alternatives by 

considering a wide range of traffic volume and network conditions as well as the signal 

transition impacts on signal coordination.  

For coordinated signal systems, traffic engineers have used two general strategies for 

timing signals to deal with pedestrian crossings: timing based on pedestrian minimums and 

timing based on vehicle minimums. Tian et al. (1999 and 2000) have analyzed the various 

effects of the two pedestrian treatment alternatives through case studies. It was found that 

although timing based on vehicle minimums can generally result in a shorter system cycle 

length, timing based on pedestrian minimums can normally achieve the same operational 

efficiency. The most significant advantage of timing based on pedestrian minimums is that the 

signal system will always remain in coordination. According to their study, the only drawback 

of timing based on pedestrian minimums was the likely use of longer cycle length. It was 

recommended that timing based on the pedestrian minimum technique should be applied when 

longer cycle length is required for the system and medium to high level pedestrian crossing 

activities exist. 



 

 
 

10 LITERATURE REVIEW 

Timing based on pedestrian minimums requires accommodation of pedestrian crossing 

time in the controller phase splits. The major advantage of this strategy is that the signal will 

remain in coordination regardless of whether there is a pedestrian phase activation; thus, it is a 

preferred alternative from the point of view of system operations (Tian and Urbanik, 2001). 

Tian et al. (2001) provided various alternatives for pedestrian timings under split-phasing 

operations. The advantages and disadvantages, implementation strategies, and potential impact 

on intersection operations, especially on coordinated signal systems, are addressed with regard 

to each timing alternative. In another study, Tian et al. (2006) proposed a model that consists 

of the probability of having a pedestrian call in a cycle, and the corresponding capacities and 

delays for the traffic movements. The model was compared with the SimTraffic simulation 

model based on a generic intersection with semi-actuated signal control, and was found to 

produce consistent delay results between the two models. Using the proposed model, the effects 

of pedestrians on intersection capacity and delay were analyzed. They concluded that the 

vehicle movement that is concurrent with pedestrian movement can achieve a higher capacity 

with a shorter cycle length with the same pedestrian volumes.  

None of these studies, however, have dealt with the impact of accommodating pedestrian 

timing on coordinated signal systems in much detail. In the next section, a mathematical model 

will be developed that can be used as a robust method for the analysis of accommodating 

pedestrian timing under different volume and signal conditions. 

  



 

 
 

11 MATHEMATICAL MODEL 

MATHEMATICAL MODEL 

Accommodating pedestrian timing in coordinated signal systems implies that the cycle length 

must be long enough to accommodate the Walk and Flash-Don’t-Walk (called pedestrian 

clearance interval) for the side street. The advantage of this treatment is that a signal will always 

remain in coordination regardless of whether a pedestrian is crossing or not. The major 

disadvantage is the resulting longer cycle length, which may be operationally inefficient when 

vehicular traffic volume is low. Unnecessary long vehicle delays can result. The other 

alternative is to not accommodate pedestrian timing, i.e., the side street phase split is shorter 

than what is needed for pedestrian crossing. Although this alternative has no pedestrian safety 

degradation (i.e., pedestrians still receive the same WALK and Flash-Don’t-Walk times during 

a crossing), the signal may go into transition, which will disrupt coordination, negatively 

affecting the system efficiency. In order to determine what pedestrian timing alternative is the 

best, this section proposes a mathematical model that relates vehicle volume, pedestrian 

volume, and network conditions to the delay caused by adding pedestrian timing. 

 

Figure 1: Transition due to non-accommodating pedestrian timing at coordinated signals 
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Non-accommodating PT 

Suppose Intersections 1 to 4 in Fig. 1 are coordinated and pedestrian timing (PT) is not 

accommodated into traffic signal splits. If there is a pedestrian call at Intersection 2 to cross 

the main street and the required PT is more than the green time of the side street (for simplicity, 

green time through this section means green time plus yellow and all red), then green time of 

the main street (g) will be delayed by the additional time needed for pedestrians to cross the 

main street at the first cycle in transition. The value of additional time depends on the side 

street green time interval and required pedestrian time and can be calculated by the following 

equation: 

𝑡𝑎 = 𝑡𝑝 − 𝑔𝑠 

Equation 1 

𝑡𝑎: Additional time needed for green time of the side street for pedestrians to cross main 

street (sec) 

𝑡𝑝: Required pedestrian time (walk time plus flash do not walk plus clearance time) (sec) 

𝑔𝑠: Side street green time (sec) 

Theoretically, if 𝑡𝑎 ≥ 𝐶𝑦𝑐𝑙𝑒 𝐿𝑒𝑛𝑔𝑡ℎ, then only the remainder of the cycle length divided 

by 𝑡𝑎 should be used as 𝑡𝑎. However, in practice this issue is very unlikely and therefore, it will 

not be discussed here. 

As the next transition cycles, the amount of 𝑡𝑎 depends on the transition method and the 

number of transition cycles during one transition period. The number of transition cycles during 

one transition period can be calculated by: 

𝛽𝑠 = [
𝑡𝑎

𝐶 × 𝜇
]
+

 

Equation 2 

𝛽𝑙 = [
𝐶 − 𝑡𝑎
𝐶 × 𝜇

]
+

 

Equation 3 

𝛽𝑠: The number of transition cycles during one transition period at the shortening 

transition method. The plus in the equation means that the value should be rounded to the next 

integer. 
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𝛽𝑙: The number of transition cycles during one transition period at the lengthening 

transition method. The plus in the equation means that the value should be rounded to the next 

integer. 

𝐶: Cycle length (sec) 

𝜇: The maximum percentage of cycle length that is permissible to add to or to subtract 

from cycle length. 

From equations 2 and 3, the amount that is subtracted from each cycle (shortening 

method) or added to each cycle (lengthening method) can be calculated by: 

𝛼𝑠 = −
𝑡𝑎
𝛽𝑠

 

Equation 4 

𝛼𝑙 =
𝐶 − 𝑡𝑎
𝛽𝑙

 

Equation 5 

𝛼𝑠: The amount that is added to each cycle to lengthen the cycle length at the shortening 

method 

𝛼𝑙: The amount that is added to each cycle to lengthen the cycle length at the lengthening 

method 

The time distance of the lower bound of delayed green to the beginning of the next green 

time at Intersections 2 and 3 can be calculated by the following equations: 

𝐿2
𝑖 = {

𝑡𝑎 + (𝑖 − 1)𝛼         𝑖𝑓   𝑡𝑎 + (𝑖 − 1)𝛼 ≤ 𝑟𝑡 

𝑟𝑡                   𝑖𝑓   𝑡𝑎 + (𝑖 − 1)𝛼 > 𝑟𝑡
 

𝑖 = 1, 2, … , 𝛽 

Equation 6 

𝐿3
𝑖 = {

𝐶 − 𝑡𝑎 − (𝑖 − 1)𝛼         𝑖𝑓   𝐶 − 𝑡𝑎 − (𝑖 − 1)𝛼 ≤ 𝑟  

𝑟                           𝑖𝑓   𝐶 − 𝑡𝑎 − (𝑖 − 1)𝛼 > 𝑟
 

𝑖 = 1, 2, … , 𝛽 

Equation 7 
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𝐿2
𝑖 : The time distance of the lower bound of delayed green to the beginning of the next 

green time at Intersection 2 in Cycle i during transition 

𝐿3
𝑖 : The time distance of the lower bound of delayed green to the beginning of the next 

green time at Intersection 3 in Cycle i during transition 

𝑟𝑡: Main street red time interval during transition period (sec) 

And the time distance of the upper bound of transition green (𝑔𝑡 ) to the beginning of 

green time of Intersection 2 can be calculated by the following equations: 

𝑈2
𝑖 = {

𝑡𝑎 + (𝑖 − 1)𝛼 − 𝑔        𝑖𝑓   𝑡𝑎 + (𝑖 − 1)𝛼 > 𝑔 

0                                       𝑖𝑓   𝑡𝑎 + (𝑖 − 1)𝛼 ≤ 𝑔
 

𝑖 = 1, 2, … , 𝛽 

Equation 8 

𝑈3
𝑖 = {

𝐶 − 𝑡𝑎 − (𝑖 − 1)𝛼 − 𝑔        𝑖𝑓   𝐶 − 𝑡𝑎 − (𝑖 − 1)𝛼 − 𝑔 > 𝑔𝑡 

0                                               𝑖𝑓   𝐶 − 𝑡𝑎 − (𝑖 − 1)𝛼 − 𝑔 ≤ 𝑔𝑡
 

𝑖 = 1, 2, … , 𝛽 

Equation 9 

𝑈2
𝑖 : The time distance of the upper bound of delayed green to the beginning of the next 

green time at Intersection 2 in Cycle i during transition 

𝑈3
𝑖 : The time distance of the upper bound of delayed green to the beginning of the next 

green time at Intersection 3 in Cycle i during transition 

The amount of green time that is delayed by transition is: 

𝑔𝑑,2
𝑖 = 𝐿2

𝑖 − 𝑈2
𝑖  

Equation 10 

𝑔𝑑,3
𝑖 = 𝐿3

𝑖 − 𝑈3
𝑖  

Equation 11 

𝑔𝑑,2
𝑖 : Amount of green time that is delayed by transition at Intersection 2 in Cycle i 

during transition 
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𝑔𝑑,3
𝑖 : Amount of green time that is delayed by transition at Intersection 3 in Cycle i 

during transition 

When signals are coordinated, except for the first intersection, a portion of vehicles 

arrives as a platoon to each intersection. The portion of green time that bunched vehicles use 

at the beginning of green time of the main street can be calculated by: 

𝑔𝑏 =

{
 
 

 
 𝑟 × 𝑣𝑚

𝑓𝑠
          𝑖𝑓  

𝑟 × 𝑣𝑚

𝑓𝑠
< 𝑔

𝑔                    𝑖𝑓  
𝑟 × 𝑣𝑚

𝑓𝑠
≥ 𝑔

 

Equation 12 

𝑔𝑏 : The interval at the beginning of green time of the main street that vehicles dispatch 

as bunched from the first intersection (sec). 

𝑟: Red time interval of main street (sec) 

𝑣𝑚 : Main street volume (vps) 

𝑓𝑠 : Saturated flow rate (vps) 

𝑔: Green time interval of main street (sec) 

Vehicles will be dispatched randomly for the rest of the green time interval. The amount 

of green time that vehicles are dispatched randomly can be calculated as follows: 

𝑔𝑟 = 𝑔 − 𝑔𝑏  

Equation 13 

𝑔𝑟 : The interval toward the end of green time of the main street that vehicles dispatch 

randomly from the first intersection (sec). 

The value of 𝑔𝑏 and 𝑔𝑟  change during transition. The value of them during each cycle 

of the transition period can be calculated by the following equations: 
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𝑔𝑏,2
𝑖 =

{
  
 

  
 
𝑔𝑏                                                         𝑖𝑓  𝑈2

𝑖 = 0 𝑎𝑛𝑑 𝑔𝑏 < 𝑔𝑑,2
𝑖

𝑔𝑑,2
𝑖                                                       𝑖𝑓  𝑈2

𝑖 = 0 𝑎𝑛𝑑 𝑔𝑏 ≥ 𝑔𝑑,2
𝑖

𝑔𝑏                                                   𝑖𝑓  𝑈2
𝑖 > 0 𝑎𝑛𝑑 𝐿2

𝑖 − 𝑈2
𝑖 = 𝑔

0                          𝑖𝑓  𝑈2
𝑖 > 0 𝑎𝑛𝑑 𝐿2

𝑖 − 𝑈2
𝑖 < 𝑔 𝑎𝑛𝑑 𝑔𝑟 ≥ 𝑔𝑑,2

𝑖

𝑔𝑑,2
𝑖 − 𝑔𝑟           𝑖𝑓  𝑈2

𝑖 > 0 𝑎𝑛𝑑 𝐿2
𝑖 − 𝑈2

𝑖 < 𝑔 𝑎𝑛𝑑 𝑔𝑟 < 𝑔𝑑,2
𝑖

 

Equation 14 

𝑔𝑟,2
𝑖 =

{
  
 

  
 
𝑔𝑑,2
𝑖 − 𝑔𝑏                                                         𝑖𝑓  𝑈2

𝑖 = 0 𝑎𝑛𝑑 𝑔𝑏 < 𝑔𝑑,2
𝑖

0                                                                        𝑖𝑓  𝑈2
𝑖 = 0 𝑎𝑛𝑑 𝑔𝑏 ≥ 𝑔𝑑,2

𝑖

𝑔𝑟                                                                 𝑖𝑓  𝑈2
𝑖 > 0 𝑎𝑛𝑑 𝐿2

𝑖 − 𝑈2
𝑖 = 𝑔

𝑔𝑑,2
𝑖                                   𝑖𝑓  𝑈2

𝑖 > 0 𝑎𝑛𝑑 𝐿2
𝑖 − 𝑈2

𝑖 < 𝑔 𝑎𝑛𝑑 𝑔𝑟 ≥ 𝑔𝑑,2
𝑖

𝑔𝑟                                     𝑖𝑓  𝑈2
𝑖 > 0 𝑎𝑛𝑑 𝐿2

𝑖 − 𝑈2
𝑖 < 𝑔 𝑎𝑛𝑑 𝑔𝑟 < 𝑔𝑑,2

𝑖

 

Equation 15 

𝑔𝑏,3
𝑖 =

{
  
 

  
 
𝑔𝑏                                                         𝑖𝑓  𝑈3

𝑖 = 0 𝑎𝑛𝑑 𝑔𝑏 < 𝑔𝑑,3
𝑖

𝑔𝑑,3
𝑖                                                       𝑖𝑓  𝑈3

𝑖 = 0 𝑎𝑛𝑑 𝑔𝑏 ≥ 𝑔𝑑,3
𝑖

𝑔𝑏                                                   𝑖𝑓  𝑈3
𝑖 > 0 𝑎𝑛𝑑 𝐿3

𝑖 − 𝑈3
𝑖 = 𝑔𝑡

0                          𝑖𝑓  𝑈3
𝑖 > 0 𝑎𝑛𝑑 𝐿3

𝑖 − 𝑈3
𝑖 < 𝑔𝑡 𝑎𝑛𝑑 𝑔𝑟 ≥ 𝑔𝑑,3

𝑖

𝑔𝑑,3
𝑖 − 𝑔𝑟           𝑖𝑓  𝑈3

𝑖 > 0 𝑎𝑛𝑑 𝐿3
𝑖 − 𝑈3

𝑖 < 𝑔𝑡 𝑎𝑛𝑑 𝑔𝑟 < 𝑔𝑑,3
𝑖

 

Equation 16 

𝑔𝑟,2
𝑖 =

{
  
 

  
 
𝑔𝑑,3
𝑖 − 𝑔𝑏                                                         𝑖𝑓  𝑈3

𝑖 = 0 𝑎𝑛𝑑 𝑔𝑏 < 𝑔𝑑,3
𝑖

0                                                                        𝑖𝑓  𝑈3
𝑖 = 0 𝑎𝑛𝑑 𝑔𝑏 ≥ 𝑔𝑑,3

𝑖

𝑔𝑟                                                                 𝑖𝑓  𝑈3
𝑖 > 0 𝑎𝑛𝑑 𝐿3

𝑖 − 𝑈3
𝑖 = 𝑔𝑡

𝑔𝑑,3
𝑖                                   𝑖𝑓  𝑈3

𝑖 > 0 𝑎𝑛𝑑 𝐿3
𝑖 − 𝑈3

𝑖 < 𝑔𝑡 𝑎𝑛𝑑 𝑔𝑟 ≥ 𝑔𝑑,3
𝑖

𝑔𝑟                                     𝑖𝑓  𝑈3
𝑖 > 0 𝑎𝑛𝑑 𝐿3

𝑖 − 𝑈3
𝑖 < 𝑔𝑡 𝑎𝑛𝑑 𝑔𝑟 < 𝑔𝑑,3

𝑖

 

Equation 17 

𝑔𝑏,2
𝑖 : The time interval at the beginning of green time of the main street at Intersection 2 

that vehicles dispatch as bunched from the first intersection in Cycle i during transition (sec). 

𝑔𝑟,2
𝑖 : The time interval at the beginning of green time of the main street at Intersection 2 

that vehicles dispatch randomly from the first intersection in Cycle i during transition (sec). 

𝑔𝑏,3
𝑖 : The time interval at the beginning of green time of the main street at Intersection 3 

that vehicles dispatch as bunched from Intersection 2 in Cycle i during transition (sec). 
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𝑔𝑟,3
𝑖 : The time interval at the beginning of green time of the main street at Intersection 2 

that vehicles dispatch as randomly from Intersection 2 in Cycle i during transition (sec). 

The average delay that vehicles experience because of transition during one cycle can 

be calculated by: 

𝑍𝑛,2
𝑖 = [𝑔𝑏,2

𝑖 × 𝑓𝑠 (
𝐿2
𝑖 + (𝑈2

𝑖 + 𝑔𝑟,2
𝑖 )

2
)] + [𝑔𝑟,2

𝑖 × 𝑣𝑚 (
(𝐿2
𝑖 − 𝑔𝑏,2

𝑖 ) + 𝑈2
𝑖

2
)]

− [𝑣𝑠,2 × 𝜌(
(𝑡𝑎 )

2

2
)] 

Equation 18 

𝑍𝑛,3
𝑖 = [𝑔𝑏,3

𝑖 × 𝑓𝑠 (
𝐿3
𝑖 + (𝑈3

𝑖 + 𝑔𝑟,3
𝑖 )

2
)] + [𝑔𝑟,3

𝑖 × 𝑣𝑚, (
(𝐿3
𝑖 − 𝑔𝑏,3

𝑖 ) + 𝑈3
𝑖

2
)] 

 

𝑍𝑛,2
𝑖 : Delay of cycle i due to pedestrian call at Intersection 2 (veh-sec) 

𝑣𝑠 : Side street volume (vps) 

𝜌: The weight of side street volume compared to main street (0 ≤ 𝜌 ≤ 1) 

The third term of Equation 18, refers to the side street and is added only to the first cycle 

in the transition period. The factor 𝜌 is added to the model to leverage the importance of the 

main street compared to side street(s). Many agencies prefer a good progression along the main 

street that sometimes imposes more delays on side street(s) vehicles. If 𝜌 is equal to 1, then the 

importance of one vehicle on the main street is equal to the side street, and if 𝜌 is equal to zero, 

it means vehicles at side streets are completely overlooked. 

If the pedestrian volume is high, before a transition period ends, another transition period 

starts because of another pedestrian call. To consider overlapping transition periods, the 

following equation calculates the number of cycles that go into transition before another 

pedestrian call occurs:  

𝛾 =

{
 

 
1

𝑃(𝑋 ≥ 1)
  𝑖𝑓  

1

𝑃(𝑋 ≥ 1)
≤ 𝛽

𝛽                  𝑖𝑓  
1

𝑃(𝑋 ≥ 1)
> 𝛽

 

Equation 19 



 

 
 

18 MATHEMATICAL MODEL 

𝛾: The number of cycles that go into transition before another pedestrian call occurs. 

𝑃(𝑋 ≥ 1): Probability of having at least one pedestrian call during one cycle 

For example if 𝑃(𝑋 ≥ 1) = 0.2 and 𝛽 = 6 then 𝛾 = 5. This means that six cycles are 

needed for the signal to return to coordination but after five cycles, there would be another 

pedestrian call.  

The probability of having at least one pedestrian call at a cycle can be expressed by the 

following equation: 

𝑃(𝑋 ≥ 1) = 1 − 𝑃(𝑋 = 0) = 1 − 𝑒−(𝑣𝑝 /3600)𝐶 

Equation 20 

𝑣𝑝 : Pedestrian volume for crossing the main street (pph) 

By putting together the previous equations, the following equations can calculate the 

delay for one transition period at the intersection with pedestrian call (Intersection 2) and its 

next intersection (Intersection 3): 

𝑍𝑛,2
𝑡 = [∑[[𝑔𝑏,2

𝑖 × 𝑓𝑠 (
𝐿2
𝑖 + (𝑈2

𝑖 + 𝑔𝑟,2
𝑖 )

2
)] + [𝑔𝑟,2

𝑖 × 𝑣𝑚 (
(𝐿2
𝑖 − 𝑔𝑏,2

𝑖 ) + 𝑈2
𝑖

2
)]]

𝛾

𝑖=1

]

− [𝑣𝑠,2 × 𝜌(
(𝑡𝑎 )

2

2
)] 

Equation 21 

𝑍𝑛,3
𝑡 =∑[[𝑔𝑏,3

𝑖 × 𝑓𝑠 (
𝐿3
𝑖 + (𝑈3

𝑖 + 𝑔𝑟,3
𝑖 )

2
)] + [𝑔𝑟,3

𝑖 × 𝑣𝑚, (
(𝐿3
𝑖 − 𝑔𝑏,3

𝑖 ) + 𝑈3
𝑖

2
)]]

𝛾

𝑖=1

 

Equation 22 

𝑍𝑛,2
𝑡 : Delay of one transition period due to non-accommodating PT at Intersection 2 if 

pedestrian call occurs at Intersection 2 

𝑍𝑛,3
𝑡 : Delay of one transition period due to non-accommodating PT at Intersection 3 if 

pedestrian call occurs at Intersection 2 

The delay Z does not occur at all cycles. Therefore, to calculate a transition-caused delay 

for one hour, it should be determined how many transition periods happen during one hour. If 
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the increase and decrease of a cycle length during transition is overlooked, the number of 

transition periods can be calculated by: 

𝑁 =

{
 

 
3600

𝐶 × 𝛾
                            𝑖𝑓 

1

𝑃(𝑋 ≥ 1)
≤ 𝛽

3600

𝐶
× 𝑃(𝑋 ≥ 1)     𝑖𝑓 

1

𝑃(𝑋 ≥ 1)
> 𝛽

 

Equation 23 

𝑁: Number of transition periods per hour 

The length of the first cycle in transition is equal to 𝐶 + 𝑡𝑎 and the length of the next 

cycles in transition for shortening and lengthening methods are calculated by the following 

equations: 

𝐶𝑡 = 𝐶 + 𝛼 

Equation 24 

𝐶𝑡: The length of cycles after the first cycle in transition period (sec) 

Therefore, the average of cycle length during one hour can be calculated by: 

𝐶𝑎 =

{
 
 

 
 (𝐶 + 𝑡𝑎) + [(𝛾 − 1)𝐶𝑡]

𝛾
                                                                      𝑖𝑓   

1

𝑃(𝑋 ≥ 1)
≤ 𝛽 

(𝐶 + 𝑡𝑎) + [(𝛽 − 1)𝐶𝑡]

𝛽
𝑃(𝑋 ≥ 1)𝛽 + 𝐶[1 − [𝑃(𝑋 ≥ 1)𝛽]]    𝑖𝑓   

1

𝑃(𝑋 ≥ 1)
> 𝛽

 

Equation 25 

𝐶𝑎: Average cycle length during one hour (sec) 

Using the value of average cycle length, Equation 23 can be rewritten as follow: 

𝑁 =

{
 

 
3600

𝐶𝑎 × 𝛾
                            𝑖𝑓 

1

𝑃(𝑋 ≥ 1)
≤ 𝛽

3600

𝐶𝑎
× 𝑃(𝑋 ≥ 1)     𝑖𝑓 

1

𝑃(𝑋 ≥ 1)
> 𝛽

 

Equation 26 

By multiplying Equations 21 and 22 to Equation 26, hourly delay of non-

accommodating PT due to transition at Intersection 2 and 3 if pedestrian call occurs at 

Intersection 2 can be calculated as follow: 
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𝐷𝑛,2
ℎ = 𝑍𝑛,2

𝑡 × 𝑁 

Equation 27 

𝐷𝑛,3
ℎ = 𝑍𝑛,3

𝑡 × 𝑁 

Equation 28 

𝐷𝑛,2
ℎ : Hourly delay of non-accommodating PT at Intersection 2 if pedestrian call occurs 

at Intersection 2. 

𝐷𝑛,3
ℎ : Hourly delay of non-accommodating PT at Intersection 3 if pedestrian call occurs 

at Intersection 2. 

Equations 27 and 28 define the delay caused by non-accommodating PT at one 

intersection in the middle of a series of coordinated intersections. It does not consider the other 

delays imposed on vehicles.  

If the pedestrian call occurs at the first intersection, the vehicles arriving at this 

intersection cannot be considered as bunched anymore because its previous intersection is not 

coordinated with it. As a result, the cycle length of this intersection compared to its previous 

intersection is usually different. Therefore, even if vehicles approach as a platoon because of 

another signalized intersection, this bunched arrival can be considered as random. The delay 

caused by pedestrian call and transition at this intersection can be modeled as follows: 

𝑍𝑛,1
𝑡 = [∑[𝑔𝑑,1

𝑖 × 𝑣𝑚 (
𝐿1
𝑖 − 𝑈1

𝑖

2
)]

𝛾

𝑖=1

] − [𝑣𝑠,1 × 𝜌(
(𝑡𝑎 )

2

2
)] 

Equation 29 

𝑍𝑛,2
𝑡 : Delay of one transition period due to non-accommodating PT at Intersection 1 if 

pedestrian call occurs at Intersection 1 

All parameters of this equation can be calculated similarly to equations related to 

Intersection 2. Also, the delay of its next intersection can be calculated similarly to the delay 

of Intersection 3 when pedestrian call occurs at Intersection 2. Therefore, hourly delay of non-

accommodating PT at Intersection 1 and 2 if pedestrian call occurs at Intersection 1 can be 

calculated as follows: 

𝐷𝑛,1
ℎ = 𝑍𝑛,1

𝑡 × 𝑁 

Equation 30 
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𝐷𝑛,2
ℎ = 𝑍𝑛,2

𝑡 × 𝑁 

Equation 31 

𝐷𝑛,1
ℎ : Hourly delay of non-accommodating PT at Intersection 1 if pedestrian call occurs 

at Intersection 1. 

𝐷𝑛,2
ℎ : Hourly delay of non-accommodating PT at Intersection 2 if pedestrian call occurs 

at Intersection 1. 

By summing up the total hourly delay of each intersection, the total delay of non-

accommodating PT at intersection with pedestrian call and its next intersection can be 

calculated as follows: 

𝐷𝑛,𝑡
ℎ =∑𝐷𝑛,𝑖

ℎ

𝑝+1

𝑖=𝑝

 

Equation 32 

𝐷𝑛,𝑡
ℎ : Total hourly delay caused by transition when PT is not accommodated at 

Intersection p (intersection with pedestrian call) and its next intersection. 

𝑝: The intersection number with pedestrian call 

Accommodating PT 

Figure 2 demonstrates the problem of adding 𝑡𝑎 to side street green time. For the first 

intersection, the following equation can show the delay caused by accommodating PT into 

signal timing: 

𝐷𝑎,1
ℎ = [

(𝑡𝑎)
2(𝑉𝑚 − 𝑉𝑠,1)

2
] (
3600

𝐶
) =

1800 (𝑡𝑎)
2(𝑉𝑚 − 𝑉𝑠,1)

𝐶
 

Equation 33 

𝐷𝑎,1
ℎ : Delay caused by adding 𝑡𝑎 to side street green time at Intersection 1 (veh-sec). 
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Figure 2: Accommodating pedestrian timing at coordinated signals 

For the next intersections, if 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑 𝑔𝑟𝑒𝑒𝑛(𝑔𝑟𝑒𝑞) ≤ 𝑎𝑐𝑐𝑜𝑚𝑚𝑜𝑑𝑎𝑡𝑒𝑑 𝑔𝑟𝑒𝑒𝑛 (𝑔𝑎), 

then there is no delay at the main street caused by adding 𝑡𝑎 to side street green time. However 

if 𝑔𝑟𝑒𝑞 > 𝑔𝑎, then delay can be calculated by multiplying the number of vehicles that could not 

be served due to increasing the side street green time. Therefore, for the next intersections 

(Intersection 2, 3, …, n) the delay of adding 𝑡𝑎 can be formulated as follows: 

𝐷𝑎,𝑖
ℎ =

{
 
 

 
 1800 ( 𝑡𝑎)

2(−𝜌 × 𝑣𝑠,𝑖)

𝐶
                                        𝑖𝑓   𝑔𝑟𝑒𝑞 ≤ 𝑔𝑎 

1800 (min (𝑡𝑎, 𝑔𝑟𝑒𝑞 − 𝑔𝑎))
2
(𝑓𝑠 − 𝜌 × 𝑣𝑠,𝑖)

𝐶
      𝑖𝑓   𝑔𝑟𝑒𝑞 > 𝑔𝑎 

 

𝑖 = 2, 3, … , 𝑛 

Equation 34 

𝐷𝑎,𝑖
ℎ : Delay of accommodating 𝑡𝑎 (adding 𝑡𝑎 to side street green time) at Intersection i 

(veh-sec) 
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𝑛: Number of coordinated signals 

𝑣𝑠,𝑖: Side street i volume (vps) 

Required green (𝑔𝑟𝑒𝑞) can be calculated using the following equation: 

𝑔𝑟𝑒𝑞 =
𝑣𝑚 × 𝐶

𝑓𝑠
  

Equation 35 

𝑔𝑟𝑒𝑞: Required green based on main street volume and its saturation flow rate. 

And accommodated green (𝑔𝑎) can be calculated by: 

𝑔𝑎 = 𝑔 − 𝑡𝑎 

Equation 36 

𝑔𝑎: Accommodated green (sec) 

Note that in Equation 36, having an equal base in comparing the accommodating and 

non-accommodating PT, cycle length is considered equal for both methods; therefore, the 

additional time that is added to side street green time will be reduced from the main street green 

time. As a result, the value of 𝑡𝑎 must not exceed the main street green time. Practically for a 

certain cycle length, maximum 𝑡𝑎 can be determined by the following equation: 

𝑡𝑎,𝑚𝑎𝑥,𝑎 ≈ 𝑔 − 𝑔𝑟𝑒𝑞  

Equation 37 

𝑡𝑎,𝑚𝑎𝑥,𝑛: Maximum 𝑡𝑎 for accommodating PT method 

For example, suppose that the cycle length at an intersection is 60 seconds, the green 

time of the main street is 30 seconds, left turn green time of the main street is 10 seconds, and 

the required pedestrian time (Walk+ FDW+ Clearance) is 50 seconds. This means 30 seconds 

must be reduced from the main street green times (left turn and through). Therefore, this cycle 

length cannot accommodate pedestrian timing and needs to be increased to a bigger value. 

Summing up Equations 33 and 34, the total hourly delay of accommodating PT can be 

calculated by: 
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𝐷𝑎,𝑡
ℎ =∑𝐷𝑎,𝑖

ℎ

𝑛

𝑖=1

 

Equation 38 

The effect of semi-actuated coordination 

Equations 31 and 34 do not account for early green of the main street due to left turn or side 

street force-off on delay calculations. In other words, it assumes that coordination is running 

under fixed split timing. If coordination is semi-actuated, it is possible that the signal does not 

go into transition or 𝑡𝑎 is reduced because of early green of the main street. The following 

sections investigate this issue for accommodating and non-accommodating methods. 

1) Accommodating 

Two extremes for this method exist. The first is when there is no vehicle at the side street 

and no pedestrian volume crossing the major street. In this situation, the main street remains 

green and therefore 𝑡𝑎 is zero. The second is when intersections are saturated and 𝑃(𝑋 ≥ 1) =

1. In this situation, 𝑡𝑎 is always added to the side street green time. At other times, the amount 

of 𝑡𝑎 is a function of side street volume and pedestrian volume: 

𝑡𝑎
𝑎 = 𝑓(𝑣𝑠, 𝑣𝑝) 

Equation 39 

𝑡𝑎
𝑎: Modified 𝑡𝑎 for accommodating PT at semi-actuated coordination. 

For Equation 39, if there is even one pedestrian at each cycle, 𝑡𝑎 would be at its 

maximum no matter what 𝑣𝑠 is, but if there is no pedestrian, 𝑡𝑎 remains zero assuming that the 

controller is able to terminate the side street green time at its original value. With this 

assumption, Equation 39 can be simplified as follow: 

𝑡𝑎
𝑎 = 𝑡𝑎 ×  𝑃(𝑋 ≥ 1) 

Equation 40 

2) Non-accommodating 

When PT is not accommodated, 𝑡𝑎 can be less than required 𝑡𝑎 or even zero due to the 

main street left turn force-off. Therefore, the value of 𝑡𝑎 depends on the volume of the main 

street left turn and the maximum volume that this left turn can serve per cycle. The left turn per 

cycle can be calculated by the following equation: 
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𝑣𝑙,𝑐 = 𝑣𝑙 × 𝐶 

Equation 41 

𝑣𝑙,𝑐: Main street left turn volume per cycle 

𝑣𝑙: Main street left turn volume (vps) 

The maximum volume that this left turn can serve per cycle can be calculated as follows: 

𝑐𝑙,𝑐 = 𝑓𝑠 × 𝑔𝑙  

Equation 42 

𝑐𝑙,𝑐: Capacity of left turn (vehicle per cycle) 

𝑔𝑙: Left turn green time interval (sec) 

Based on Equations 41 and 42, the modified 𝑡𝑎 for non-accommodating PT at semi-

actuated coordination signals can be calculated by the following equation: 

𝑡𝑎
𝑛 =

{
  
 

  
 𝑡𝑎                                                                      𝑖𝑓                

𝑣𝑙,𝑐

𝑐𝑙,𝑐
≥ 1  𝑜𝑟 

𝑣𝑙,𝑐

𝑐𝑙,𝑐
𝑔𝑙 + 𝐸 ≥ 𝑔𝑙

𝑡𝑎 − [min (𝑡𝑎, 𝑔𝑙 − (
𝑣𝑙,𝑐

𝑐𝑙,𝑐
𝑔𝑙 + 𝐸))]      𝑖𝑓      0 <

𝑣𝑙,𝑐

𝑐𝑙,𝑐
< 1  𝑎𝑛𝑑 

𝑣𝑙,𝑐

𝑐𝑙,𝑐
𝑔𝑙 + 𝐸 < 𝑔𝑙

𝑡𝑎 − (min(𝑔𝑙 , 𝑡𝑎)                                         𝑖𝑓                                                         𝑣𝑙 = 0

 

Equation 43 

𝑡𝑎
𝑎: Modified 𝑡𝑎 for non-accommodating PT at semi-actuated coordination 

𝐸: Gap out extension (sec) 

Note that 𝑡𝑎
𝑎 will not be used for the side street. Also, if the main street is one way, or if 

there is no phase for left turn, there is no early green because of left turn gap out and therefore, 

Equation 43 will not be applied on 𝑡𝑎. 

The optimum method 

For any situation, by calculating Equations 27 and 30, the two methods of accommodating and 

non-accommodating PT can be compared. The optimum method can be determined by the 

following equation: 
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𝐴 = [
𝐷𝑎,𝑡
ℎ − 𝐷𝑛,𝑡

ℎ

𝐷𝑎,𝑡
ℎ ] × 100 

Equation 44 

𝐴: Percentage of delay increase after accommodating PT 

Therefore, if 𝐴 ≫ 0, non-accommodating PT is preferable. If 𝐴 ≪ 0, accommodating of 

PT is preferable; and if 𝐴 ≅ 0, then there is not a significant benefit of one method over the 

other one. 
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MODEL VALIDATION 

A code was written in COM interface of VISSIM (appendix A) to model all combinations of 

Table 1. These combinations formed 3,456 scenarios. For each scenario, two methods of 

accommodation and non-accommodation of pedestrian timing were performed and delay 

increase of accommodating PT over non-accommodating was recorded. If the result is 

negative, it means PT accommodation is preferable. If the result is positive, non-

accommodation is preferable. Figure 3 shows a sample of VISSIM simulation output. The 

outputs of these scenarios were compared with the ones obtained from the mathematical model.  

Table 1: Range of simulation parameters 

PARAMETER FROM INTERVAL TO NO OF CASES 

Volume 50 50 1200 24 

Pedestrian Volume 5 5 30 6 

𝑡𝑎, 5 5 30 6 

Cycle Length 60 20 120* 4 

* for cycle lengths more than 120 sec, side street green time is long enough to accommodate pedestrian timing 

Figures 3 and 4 compare one sample of the simulation and mathematical models. It can 

be seen that up to 500 vphpl, both the simulation and mathematical models do not show a 

significant difference between A and NA (though NA is slightly better in both models). After 

500 vphpl, both models show that NA is significantly better than A. However, in the 

mathematical model, NA is only better when the transition method is shortening. In the 

simulation model, the “best” transition method was selected. For other scenarios, this 

comparison shows that the simulation results are close to the mathematical model. However, it 

can be noted that the simulation results fluctuate slightly from one volume to its adjacent 

volume. For example, in Figure 3, when volume is 200 vphpl and pedestrian volume is 30 pph, 

NA is slightly better, but when increasing the volume to 250 vphpl, NA and A are almost equal. 

For the comparison of simulation and mathematical models, these fluctuations are ignored.  
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Figure 3: Simulation average delay increment after accommodating pedestrian timing, cycle 60 sec, 𝑡𝑎 = 15 sec 

 

Figure 4: Mathematical model delay caused by adding pedestrian timing, cycle 60 sec, 𝑡𝑎 = 15 sec, Ped Vol 30 pph 

The distance of intersections in these scenarios was half a mile from each other. To check 

if the distance of intersections can affect the results, all 3,456 scenarios were retested by 

multiplying the distance of intersections by factors 0.5 and 1.5. The results of these three sets 

of scenarios were compared. Figure 5 shows a sample of the results. Figure 6 depicts a sample 

of the correlation of two different distance values. From these two figures, it can be seen that 

the results of each set is close to other sets. Similar analysis on other results shows that the 

distance of intersections does not affect the results significantly.  
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Figure 5:  Sensitivity Analysis on distance between intersections 

  

 

Figure 6: Correlation of 0.25 and 0.75 mile for the conditions of Figure 5 
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MODEL SOFTWARE 

In this section, software is provided to select the best pedestrian accommodation method. Table 

2 shows the inputs required for Equation 44. The design parameters are shown by bold font 

and can vary, thus changing the results. For example, the cycle length can affect the probability 

of having pedestrian(s) during a cycle, green time intervals, and optimum transition method. 

Finding the best value of each of these parameters is very time consuming for practitioners. To 

facilitate this procedure, a software has been developed based on the mathematical model 

called PeTASC (Pedestrian Timing Accommodation into Signal Coordination) that can be 

accessed by scanning the QR code or following the link in Figure 7. Its MATLAB code can be 

seen in Appendix B. Figure 8 shows a screen shot of PeTASC. With this software, a user can 

enter inputs and choose reasonable parameters for coordinated signals. Most of these design 

parameters can be designed in other software (such as Synchro or Vistro) including optimum 

cycle length and splits. However, parameters 𝜌 and 𝜇, as well as the best transition method and 

the best method for accommodating PT. To narrow down the design range, the transition 

method can also be removed from the design parameters because many controllers are now 

able to choose the optimum transition method, also called “best way” (also known as smooth, 

short way or fast way). If Table 3 is considered as the range of the remaining design parameters, 

by calculating 60 cases using PeTASC interface, the best one can be chosen among them. 

Figure 9 shows a sample of outputs for choosing the best 𝜌, 𝜇, and PT accommodation method 

for given volume and signal parameters. This analysis indicates that for 𝜇 from 0.05 to 0.15, 

accommodating PT is preferable over both methods of transition. However, if a bigger amount 

of 𝜇 is selected, the shortening transition method reduces delays more so than lengthening and 

accommodating PT. PeTASC can analyze methods over other parameters, especially over 

volume. In other words, it can determine the volume boundaries that each method can aptly 

apply to PT. Figure 10 shows a sample output for given conditions. 

 

https://drive.google.com/open?id=0B4juw5AdxVsYTzN5c3hnVUJmSnc 

Figure 7: QR code and link address of PeTASC for download 
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Table 2: Model inputs 

VARIABLE SYMBOL 
DESIGN 

PARAMETER 

Volume 

Saturated flow rate (vps) 𝑓𝑠  No 

Main street volume (vps) 𝑣𝑚  No 

Main street left turn volume (vps) 𝑣𝑙 No 

Side street i volume (vps) 𝑣𝑠,𝑖 No 

Pedestrian volume for crossing main street (pph) 𝑣𝑝  No 

The weight of side street volume compared to main street (𝟎 ≤ 𝝆 ≤ 𝟏) 𝝆 Yes 

Signal timing 

Cycle length (sec) 𝑪 Yes 

Main street green time interval of (sec) 𝒈 Yes 

Left turn green time interval (sec) 𝒈𝒍 Yes 

Side street green time interval (sec) 𝒈𝒔 Yes 

Gap out extension (sec) 𝑬 Yes 

No. of intersection with pedestrian call 𝑝 No 

Required pedestrian time (walk time plus flash do not walk plus clearance time) (sec) 𝑡𝑝 No 

The maximum percentage of cycle length that is permit able to add to or to 

subtract from cycle length. 

𝝁 Yes 

Number of coordinated signals 𝑛 Could be 

 

 

Figure 8: Screen shot of PeTASC 
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Table 3: Range of parameters 

DESIGN PARAMETER RANGE INTERVALS 
NUMBER OF 

CASES 

𝜌  (0 ≤ 𝜌 ≤ 1) 0.25 5 

𝜇  (0.05 ≤ 𝜇 ≤ 0.3) 0.05 6 

PT accommodation method Yes / No - 2 

 

  

  

  

Figure 9: delay caused by adding PT to signal coordination, C: 80 sec; g: 0.5 C; 𝑔𝑙: 0.2 C; ta: 45 sec; E: 3 sec; n: 3; vm: 

1200 vph; vs: 0.3 vm; fs: 1.056 vps; vl: 0.1 vm; vp: 45 pph 
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Figure 10: delay caused by adding PT to signal coordination, 𝜇 = 0.2, 𝜌 = 1 

 

Figures 11 to 13 are samples of PeTASC outputs, which show average delay increments 

after accommodating pedestrian timing for different additional pedestrian time, cycle length 

and volume. These graphs were made based on the mathematical model and can be a reference 

for a wide range of conditions. For example, referring to Figure 11, the threshold for 

accommodating pedestrian timing is almost 950 vph for all pedestrian volume levels. This 

means that when additional pedestrian time (𝑡𝑎) is 35 seconds and cycle length is 160 seconds, 

if volume is more than 950 vph, accommodation of 𝑡𝑎 is more beneficial for this condition. 

The results are very sensitive to the amount of 𝑡𝑎. For example, Figure 12 diagrams are 

referring to the exact condition of Figure 11 except 𝑡𝑎 is 20 seconds more. At this condition for 

all vehicle and pedestrian volume levels, accommodating 𝑡𝑎 is more preferable compared to 
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non-accommodating. Figure 13 shows another example of sensitivity of results to 𝑡𝑎. In this 

figure, 𝑡𝑎 is equal to 25 seconds and for all vehicle and pedestrian volume levels, non-

accommodating pedestrian timing is preferable.  

 

Figure 11: 𝑡𝑎 analysis over cycle length, pedestrian and vehicle volume, 𝑡𝑎 = 35 𝑠𝑒𝑐 

 

Using similar figures to Figures 11 to 13, the vehicle and pedestrian volume thresholds 

for accommodating pedestrian time can be extracted and summarized into reference diagrams 

similar to the one shown in Figure 14 for any condition. The left side of each curve at this 

figure shows the non-accommodating area and the right side shows the accommodating area. 

For example, in Figure 14, if pedestrian volume is five persons per hour and 𝑡𝑎 is 55 seconds, 

accommodation of pedestrian timing into signal coordination is more beneficial for volume 

more than 400 vph. 
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Figure 12: 𝑡𝑎 analysis over cycle length, pedestrian and vehicle volume, 𝑡𝑎 = 45 𝑠𝑒𝑐 

 

Figure 13: 𝑡𝑎 analysis over cycle length, pedestrian and vehicle volume, 𝑡𝑎 = 25 𝑠𝑒𝑐 
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Figure 14: Volume threshold for accommodating pedestrian timing into signal coordination, cycle length 60 seconds. Left side 

of each curve shows not accommodation area and right side accommodation area. 
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SUMMARY 

Accommodating pedestrian timing in coordinated signal systems implies that the cycle length 

must be long enough to accommodate the Walk and Flash-Don’t-Walk (called pedestrian 

clearance interval) for the side street. The advantage of this treatment is that a signal will always 

remain in coordination regardless of whether there is a pedestrian crossing or not. The major 

disadvantage is the resulting longer cycle length, which may be operationally inefficient when 

vehicular traffic volume is low. Unnecessary long vehicle delays can result. The other 

alternative is to not accommodate pedestrian timing, i.e., the side street phase split is shorter 

than what is needed for pedestrian crossing. Although this alternative has no pedestrian safety 

degradation (i.e., pedestrians still receive the same WALK and Flash-Don’t-Walk times during 

a crossing), the signal may go into transition, which will disrupt coordination, negatively 

affecting the system efficiency. In order to determine what pedestrian timing alternative is the 

best, a mathematical model was provided that relates vehicle volume, pedestrian volume, and 

network conditions to the delay caused by adding pedestrian timing.  

To facilitate using the mathematical model, a software has been developed based on it 

called PeTASC (Pedestrian Timing Accommodation into Signal Coordination) that can be 

accessed by scanning the QR code or following the link in Figure 7. 

The purpose of this software is to provide practitioners an easy way to determine when 

accommodation (A) of pedestrian timing into coordination is preferable over non-

accommodating (NA). With this software, practitioners input cycle length (C), volume (v), 

required pedestrian timing (RPT), and other signal parameters. The software will then show 

them which plan, A or NA, has lower delay.  

To validate the mathematical model and its software, a code was written in COM 

interface of VISSIM (appendix A) to model a wide range of vehicle and pedestrian volume 

combinations. These combinations formed 3,456 scenarios. For each scenario, two methods of 

accommodation and non-accommodation of pedestrian timing were performed. The outputs of 

these scenarios were compared with the ones obtained from the mathematical model.  

The mathematical model does not consider the distance between intersections as a 

significant variable. To check if the distance of intersections can affect the results, all 3,456 

scenarios were retested by multiplying the distance of intersections by factors 0.5 and 1.5. The 

results of these three sets of scenarios were compared. Analysis on results shows that the 

distance of intersections does not affect the results significantly.  
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Appendix A: COM interface C# code 

Lib File: 
 
using VISSIMLIB; 
using VISSIMCOMLIB; 
 
 
MainFunc: 
 
    public partial class MainWindow : Window 
    { 
        string InpxFilename; 
        string LayxFilename; 
        Vissim _m_Vissim; 
        int _m_simperiod = 3600;         
        int _m_Ped_num=6; //6 
        int _m_MainSt_num=10;//10 
         
        public MainWindow() 
        { 
            InitializeComponent(); 
             
        } 
 
        private void _open_file_Click(object sender, RoutedEventArgs e) 
        { 
            Microsoft.Win32.OpenFileDialog dlg = new Microsoft.Win32.OpenFileDialog(); 
 
            // Set filter for file extension and default file extension  
            dlg.Filter = "VISSIM Files (*.inpx; *.layx; *.txt)|*.inpx;*.layx;*.txt"; 
            dlg.Multiselect = false; 
 
            // Display OpenFileDialog by calling ShowDialog method  
            Nullable<bool> result = dlg.ShowDialog(); 
 
            // Get the selected file name and display in a TextBox  
            if (result == true) 
            { 
                foreach (String file in dlg.FileNames) 
                { 
                    // Create a PictureBox. 
                    if (file.Contains(".inpx")) 
                    { 
                        InpxFilename = file; 
                        LayxFilename = file.Replace(".inpx", ".layx"); 
                    } 
 
                } 
 
                if (InpxFilename == null) 
                { 
                    MessageBox.Show("Do not add the *.inpx file sucessfully.", 
"Important Note"); 
                    return; 
                } 
 
 
                _m_Vissim = new Vissim(); 
 



 

 
 

41 Appendix A: COM interface C# code 

                // If you have installed muliple Vissim Versions, you have to set the 
reference to the Vissim Version you want to open. 
                VISSIMCOMFunction.LoadNet(_m_Vissim, InpxFilename); 
                VISSIMCOMFunction.LoadLayout(_m_Vissim, LayxFilename); 
                                 
                _m_simperiod = VISSIMCOMFunction.GetSimPeriod( _m_Vissim); 
                 
                MessageBox.Show("Completed!"); 
                 
            } 
 
        } 
 
 
        public void SIMRun(int i, int j,int m) 
        { 
            VISSIMCOMFunction.SetMaxSimSpeed(_m_Vissim); 
            VISSIMCOMFunction.RunContinuous(_m_Vissim); 
            VISSIMCOMFunction.StopSim(_m_Vissim); 
        } 
 
        private void _b_start_Click(object sender, RoutedEventArgs e) 
        { 
            int count = 0; 
            int startvolume_MajorSt = 200; 
            if (_UI_method_2.IsChecked == true) 
                startvolume_MajorSt = 100; 
             
            for (int i = 0; i < _m_Ped_num; i++) 
            { 
                for (int j = 0; j < _m_MainSt_num; j++) 
                { 
 
                    int PedNB = (i + 1) * 5; 
                    int MajorSt = startvolume_MajorSt + (j * 200); 
                    int OtherSt = MajorSt * 30 / 100; 
 
                    oSheet.Cells[count + 2, 20] = PedNB; 
                    oSheet.Cells[count + 2, 21] = MajorSt; 
                    oSheet.Cells[count + 2, 22] = OtherSt; 
 
                    count++; 
 
                    do 
                    { 
                        VISSIMCOMFunction.SetVolume(_m_Vissim, 2, OtherSt);                         
                    } 
                    while ( VISSIMCOMFunction.GetVolume(_m_Vissim,2) != OtherSt); 
 
                    do 
                    { 
                        VISSIMCOMFunction.SetVolume(_m_Vissim, 8, PedNB); 
                    } 
                    while ( VISSIMCOMFunction.GetVolume(_m_Vissim,8) != PedNB); 
 
                    do 
                    { 
                        VISSIMCOMFunction.SetVolume(_m_Vissim, 10, OtherSt);                         
                    } 
                    while ( VISSIMCOMFunction.GetVolume(_m_Vissim,10) != OtherSt); 
 
                    do 
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                    { 
                        VISSIMCOMFunction.SetVolume(_m_Vissim, 11, MajorSt); 
                    } 
                    while ( VISSIMCOMFunction.GetVolume(_m_Vissim,11) != MajorSt); 
 
                    do 
                    { 
                        VISSIMCOMFunction.SetVolume(_m_Vissim, 12, OtherSt); 
                    } 
                    while ( VISSIMCOMFunction.GetVolume(_m_Vissim,12) != OtherSt); 
 
                    SIMRun(PedNB, MajorSt, OtherSt); 
                } 
            } 
            MessageBox.Show("Completed!"); 
        } 
 
        private void _Exit_Click(object sender, RoutedEventArgs e) 
        { 
            if (_m_Vissim != null) 
                VISSIMCOMFunction.Exit(_m_Vissim);                 
            this.Close(); 
             
        } 
 
         
    } 
} 
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Appendix B: PeTASC MATLAB code 

% This function calculates gbji and grji: The time interval at the 

beginning  
% of green time of main street at Intersection i that vehicles dispatch as  
% bunched/random from the first intersection in Cycle i during transition 

(sec). 
% By Ali Gholami------12/29/2015 

  
function [gb1s,gr1s, gb2s, gr2s, gb1l, gr1l, gb2l, gr2l] = gbrji(i, c, g, 

ta, vm, fs, mu) 

 

  
r = c - g; 
betas = ceil(ta/c/mu); 
betal = ceil((c-ta)/c/mu); 
alphas = -ta / betas; 
alphal = (c-ta) / betal; 
mus = 1 - ((c + alphas) / c);%the real percentage of cycle length that is 

subtracted 
mul = ((c + alphal) / c) - 1;%the real percentage of cycle length that is 

added 
gs = g - mus * g; 
gl = g + mul * g; 

  
[L1s,L2s, L1l, L2l] = Lji(i, c, g, ta, mu); 
[U1s,U2s, U1l, U2l] = Uji(i, c, g, ta, mu); 

  
gd1s = L1s - U1s; 
gd2s = L2s - U2s; 
gd1l = L1l - U1l; 
gd2l = L2l - U2l; 

  
if (r * vm / fs) < g 
    gb = r * vm / fs; 
else 
    gb = g; 
end 

  
gr = g - gb; 

  
%Shortening 
if U1s == 0 && gb < gd1s 
    gb1s = gb; 
elseif U1s == 0 && gb >= gd1s 
    gb1s = gd1s; 
elseif U1s > 0 && gd1s == g 
    gb1s = gb; 
elseif U1s > 0 && gd1s <= g && gr >= gd1s 
    gb1s = 0; 
else 
    gb1s = gd1s - gr; 
end 

  
if U1s == 0 && gb < gd1s 
    gr1s = gd1s - gb; 
elseif U1s == 0 && gb >= gd1s 
    gr1s = 0; 
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elseif U1s > 0 && gd1s == g 
    gr1s = gr; 
elseif U1s > 0 && gd1s <= g && gr >= gd1s 
    gr1s = gd1s; 
else 
    gr1s = gr; 
end 

  
if U2s == 0 && gb < gd2s 
    gb2s = gb; 
elseif U2s == 0 && gb >= gd2s 
    gb2s = gd2s; 
elseif U2s > 0 && gd2s == gs 
    gb2s = gb; 
elseif U2s > 0 && gd2s <= gs && gr >= gd2s 
    gb2s = 0; 
else 
    gb2s = gd2s - gr; 
end 

  
if U2s == 0 && gb < gd2s 
    gr2s = gd2s - gb; 
elseif U2s == 0 && gb >= gd2s 
    gr2s = 0; 
elseif U2s > 0 && gd2s == gs 
    gr2s = gr; 
elseif U2s > 0 && gd2s <= gs && gr >= gd2s 
    gr2s = gd2s; 
else 
    gr2s = gr; 
end 

  

  
% lengthening 
if U1l == 0 && gb < gd1l 
    gb1l = gb; 
elseif U1l == 0 && gb >= gd1l 
    gb1l = gd1l; 
elseif U1l > 0 && gd1l == g 
    gb1l = gb; 
elseif U1l > 0 && gd1l <= g && gr >= gd1l 
    gb1l = 0; 
else 
    gb1l = gd1l - gr; 
end 

  
if U1l == 0 && gb < gd1l 
    gr1l = gd1l - gb; 
elseif U1l == 0 && gb >= gd1l 
    gr1l = 0; 
elseif U1l > 0 && gd1l == g 
    gr1l = gr; 
elseif U1l > 0 && gd1l <= g && gr >= gd1l 
    gr1l = gd1l; 
else 
    gr1l = gr; 
end 

  
if U2l == 0 && gb < gd2l 
    gb2l = gb; 
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elseif U2l == 0 && gb >= gd2l 
    gb2l = gd2l; 
elseif U2l > 0 && gd2l == gl 
    gb2l = gb; 
elseif U2l > 0 && gd2l <= gl && gr >= gd2l 
    gb2l = 0; 
else 
    gb2l = gd2l - gr; 
end 

  
if U2l == 0 && gb < gd2l 
    gr2l = gd2l - gb; 
elseif U2l == 0 && gb >= gd2l 
    gr2l = 0; 
elseif U2l > 0 && gd2l == gl 
    gr2l = gr; 
elseif U2l > 0 && gd2l <= gl && gr >= gd2l 
    gr2l = gd2l; 
else 
    gr2l = gr; 
end 
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% This function calculates the number of cycles that go into transition 

before another pedestrian call occurs. 
% By Ali Gholami------12/29/2015 
function [gammas, gammal] = gamma1(c, ta, vp, mu) 

  

  
betas = ceil(ta/c/mu); 
betal = ceil((c-ta)/c/mu); 

  

  

  
P1 = 1- exp(-(vp/3600)*c); %Probability of having at least one pedestrian 

call during one cycle 

  
if (1 / P1) <= betas 
    gammas = ceil(1 / P1); %The number of cycles that go into transition 

before another pedestrian call occurs: Shortening method 
else 
    gammas = betas; 
end 

  
if (1 / P1) <= betal 
    gammal = ceil(1 / P1); %The number of cycles that go into transition 

before another pedestrian call occurs: Lengthening method 
else 
    gammal = betal; 
end 
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% This function calculates hourly delay caused by transition for  
% both shortening and lengthening transition methods at Intersection 1 
% (intersection with pedestrian call) and its next intersection 
% By Ali Gholami------12/29/2015 

  

  
function [dns_1, dns_2, dns_total, dnl_1, dnl_2, dnl_total] = dn(c, g, gl, 

ta, vm, fs, vp, vs, vl, mu, rho, E) 

  

 
ta1 = ta; % this ta will be used for side street 
% Modified t_a for non-accommodating PT at semi-actuated coordination 
vlc = vl * c; % Main street left turn volume per cycle 
clc = fs * gl; % Capacity of left turn (vehicle per cycle) 
if (vlc / clc) >= 1 || ((vlc / clc) * gl + E) >= gl 
    ta = ta; 
elseif vl == 0 
    ta = ta - (min (gl, ta)); 
elseif ((vlc / clc) < 1 && (vlc / clc) > 0) && ((vlc / clc) * gl + E) < gl 
    ta = ta - (min ((gl - ((vlc / clc) * gl) + E), ta)); 
end 

     

     

  
[gammas, gammal] = gamma1(c, ta, vp, mu); 

  
% Calculating delay of one transition period due to non-accommodating PT at 

the 
% Intersection 2 with shortening and Lengthening transition methods 
Zn1cs_1 = 0; 
Zn1cs_2 = 0; 
Zn1cl_1 = 0; 
Zn1cl_2 = 0; 

  
%Shortening 
if gammas == 0 
    Zn1cs_1 = - (vs*rho*(ta1^2)/2); 
    Zn1cs_2 = 0; 
else 
    for i = 1:gammas 
        [L1s,L2s, L1l, L2l] = Lji(i, c, g, ta, mu); 
        [U1s,U2s, U1l, U2l] = Uji(i, c, g, ta, mu); 
        [gb1s,gr1s, gb2s, gr2s, gb1l, gr1l, gb2l, gr2l] = gbrji(i, c, g, 

ta, vm, fs, mu); 
        Zn1cs_1 = Zn1cs_1 + (gb1s*fs*(L1s+U1s+gr1s)/2) +... 
            (gr1s*vm*(L1s+U1s-gb1s)/2); %Delay of one  
        %transition period due to non-accommodating PT at the Intersection 

1 with shortening transition method 
        Zn1cs_2 = Zn1cs_2 + (gb2s*fs*(L2s+U2s+gr2s)/2) +... 
            (gr2s*vm*(L2s+U2s-gb2s)/2); 
    end 
    Zn1cs_1 = Zn1cs_1 - (vs*rho*(ta^2)/2); 
end 

  
%Lengthening 
if gammal == 0 
    Zn1cl_1 = - (vs*rho*(ta1^2)/2); 
    Zn1cl_2 = 0; 
else 
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    for i = 1:gammal 
        [L1s,L2s, L1l, L2l] = Lji(i, c, g, ta, mu); 
        [U1s,U2s, U1l, U2l] = Uji(i, c, g, ta, mu); 
        [gb1s,gr1s, gb2s, gr2s, gb1l, gr1l, gb2l, gr2l] = gbrji(i, c, g, 

ta, vm, fs, mu);     
        Zn1cl_1 = Zn1cl_1 + (gb1l*fs*(L1l+U1l+gr1l)/2) +... 
            (gr1l*vm*(L1l+U1l-gb1l)/2); %Delay of one  
        %transition period due to non-accommodating PT at the Intersection 

1 with lengthening transition method 
        Zn1cl_2 = Zn1cl_2 + (gb2l*fs*(L2l+U2l+gr2l)/2) +... 
            (gr2l*vm*(L2l+U2l-gb2l)/2); 
    end 
    Zn1cl_1 = Zn1cl_1 - (vs*rho*(ta1^2)/2); 
end 

  

     
[nts, ntl] = nt(c, ta, vp, mu);%Number of transition periods per hour for 

both shortening and lengthening transition methods 
if gammas == 0 
    dns_1 = Zn1cs_1; 
    dns_2 = 0; 
    dns_total = 0; 
else 
    dns_1 = nts * Zn1cs_1; %hourly delay caused by transition for 

shortening transition methods at the Intersection 1 
    dns_2 = nts * Zn1cs_2; %hourly delay caused by transition for 

shortening transition methods at the Intersection 2 
    dns_total = dns_1 + dns_2; %Total Shortening 
end 

  
if gammal == 0 
    dnl_1 = Zn1cl_1; 
    dnl_2 = 0; 
    dnl_total = 0; 
else 
    dnl_1 = ntl * Zn1cl_1; %hourly delay caused by transition for 

lengthening transition methods at the Intersection 1 
    dnl_2 = ntl * Zn1cl_2; %hourly delay caused by transition for 

lengthening transition methods at the Intersection 2 
    dnl_total = dnl_1 + dnl_2; %Total Lengthening 
end 
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% This function calculates hourly delay caused by accommodating pedestrian 
% timing 
% By Ali Gholami------12/30/2015 

  

  
function [da1, dan, da_total] = da(c, n, g, ta, vm, fs, vp, vs, rho) 

  
P1 = 1- exp(-(vp/3600)*c); %Probability of having at least one pedestrian 

call during one cycle 
ga = g - ta; 
greq = vm * c / fs; 
ta = ta * P1; 

  
% First intersection 
da1 = ta^2 * (vm - (rho * vs)) * 1800 / c; %Delay caused by adding t_a to 

side street green time (veh-sec) at Intersection 1. 

  

  
%Next intersections 
dan = 0; 
for i = 2:n 
    if greq <= ga 
        dan = dan + (ta^2 * (0 - (rho * vs)) * 1800 / c); 
    else 
        dan = dan + ((min (ta, (greq - ga)))^2 * (fs - (rho * vs)) * 1800 / 

c); 
    end 
end 

  
da_total = da1 + dan; 
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% This function calculates Average cycle length during one hour (sec) for 
% both shortening and lengthening transition methods 
% By Ali Gholami------12/29/2015 

    
function [cas, cal] = ca(c, ta, vp, mu) 
% clear 
% c = 70; 
% ta = 40; 
% vp = 5; 
% mu = .1; 

  
betas = ceil(ta/c/mu); 
betal = ceil((c-ta)/c/mu); 
cs = c - ta/betas; 
cl = c + ta/betal; 
P1 = 1- exp(-(vp/3600)*c); %Probability of having at least one pedestrian 

call during one cycle 
[gammas, gammal] = gamma1(c, ta, vp, mu); 
%Average cycle length during one hour with shortening transition method 

(sec) 
if 1/P1 <= betas 
    cas = ((c+ta)+((gammas-1)*(cs)))/gammas; 
else 
    cas = (((c+ta)+((betas-1)*(cs)))/betas)*P1*betas + c*(1-(P1*betas)); 
end 
%Average cycle length during one hour with lengthening transition method 

(sec) 
if 1/P1 <= betal 
    cal = ((c+ta)+((gammal-1)*(cl)))/gammal; 
else 
    cal = (((c+ta)+((betal-1)*(cl)))/betal)*P1*betal + c*(1-(P1*betal)); 
end 
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% This function calculates Number of transition periods per hour for 
% both shortening and lengthening transition methods 
% By Ali Gholami------12/29/2015 

  
function [nts, ntl] = nt(c, ta, vp, mu) 

 
betas = ceil(ta/c/mu); 
betal = ceil((c-ta)/c/mu); 
P1 = 1- exp(-(vp/3600)*c); %Probability of having at least one pedestrian 

call during one cycle 
[gammas, gammal] = gamma1(c, ta, vp, mu); 
%Average cycle length during one hour with (sec) 
[cas, cal] = ca(c, ta, vp, mu); 

  
if 1/P1 <= betas 
    nts = 3600 / cas / gammas; 
else 
    nts = 3600 / cas * P1; 
end 
if 1/P1 <= betal 
    ntl = 3600 / cal / gammal; 
else 
    ntl = 3600 / cal * P1; 
end 
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% This function calculates Lj^i: The time distance of the lower bound of  
% delayed green to beginning of the next green time at Intersection j in 

Cycle i during transition 
% By Ali Gholami------12/29/2015 

  
function [L1s,L2s, L1l, L2l] = Lji(i, c, g, ta, mu) 

 
r = c - g; 
betas = ceil(ta/c/mu); 
betal = ceil((c-ta)/c/mu); 
alphas = (-ta) / betas; 
alphal = (c-ta) / betal; 
mus = 1 - ((c + alphas) / c);%the real percentage of cycle length that is 

subtracted 
mul = ((c + alphal) / c) - 1;%the real percentage of cycle length that is 

added 
rs = r - mus * r; 
rl = r + mul * r; 

  

  
if (ta + (i - 1) * alphas) <= rs 
    L1s = ta + (i - 1) * alphas; 
else 
    L1s = rs; 
end 

  
if (ta + (i - 1) * alphal) <= rl 
    L1l = ta + (i - 1) * alphal; 
else 
    L1l = rl; 
end 

  
if (c - ta - (i - 1) * alphas) <= r 
    L2s = c - ta - (i - 1) * alphas; 
else 
    L2s = r; 
end 

  
if (c - ta - (i - 1) * alphal) <= r 
    L2l = c - ta - (i - 1) * alphal; 
else 
    L2l = r; 
end 
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% This function calculates Uj^i: The time distance of the upper bound of  
% delayed green to beginning of the next green time at Intersection j in 

Cycle i during transition 
% By Ali Gholami------12/29/2015 

  
function [U1s,U2s, U1l, U2l] = Uji(i, c, g, ta, mu) 

 
betas = ceil(ta/c/mu); 
betal = ceil((c-ta)/c/mu); 
alphas = (-ta) / betas; 
alphal = (c-ta) / betal; 
mus = 1 - ((c + alphas) / c);%the real percentage of cycle length that is 

subtracted 
mul = ((c + alphal) / c) - 1;%the real percentage of cycle length that is 

added 
gs = g - mus * g; 
gl = g + mul * g; 

  

  
if (ta + (i - 1) * alphas) > g 
    U1s = ta + (i - 1) * alphas - g; 
else 
    U1s = 0; 
end 

  
if (ta + (i - 1) * alphal) > g 
    U1l = ta + (i - 1) * alphal - g; 
else 
    U1l = 0; 
end 

  
if (c - ta - (i - 1) * alphas -g) > gs 
    U2s = c - ta - (i - 1) * alphas -g; 
else 
    U2s = 0; 
end 

  
if (c - ta - (i - 1) * alphal -g) > gl 
    U2l = c - ta - (i - 1) * alphal -g; 
else 
    U2l = 0; 
end 
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% This function compares hourly delay caused by accommodating pedestrian 
% timing and non-accommodating PT 
% By Ali Gholami------12/30/2015 

  
function [y1, y2, y3, comparison, which_method] = compare2 (c, gpercent, 

glpercent, ta, vp, vlpercent, vspercent, E, n, fs, vmto) 

  
g = gpercent * c; 
gl = glpercent * c; % Left turn green time interval (sec) 
vm = 400 / 3600; 
vs = vmto * vspercent ; 
fs = fs / 3600; 
vl = vmto * vlpercent; 

  
comparison = []; 
which_method = []; 

  
for tt = 0.05:0.05:.3 
    mu = tt; 
    y1 = []; 
    y2 = []; 
    y3 = []; 
    for ii = 0:.25:1  
        rho = ii;     

  
        [dns_1, dns_2, dns_total, dnl_1, dnl_2, dnl_total] = dn(c, g, gl, 

ta, vm, fs, vp, vs, vl, mu, rho, E); 
        [da1, dan, da_total] = da(c, n, g, ta, vm, fs, vp, vs, rho); 
        besttransition = min (dns_total, dnl_total); 
        accomm_delay_increase = (da_total - besttransition)/da_total*100; 
        a = [ta; c; vm*3600; vs*3600; vl*3600; vp; mu; rho; dns_total; 

dnl_total; da_total]; 
        b = [ta; c; vm*3600; vs*3600; vl*3600; vp; mu; rho; 

accomm_delay_increase]; 
        comparison = [comparison, a]; % Comparison of shortening, 

lengthening and accommodating 
        which_method = [which_method, b]; 
        y1 = [y1, dns_total]; 
        y2 = [y2, dnl_total]; 
        y3 = [y3, da_total]; 
    end 
    x=0:.25:1; 
    figure 
    plot(x, y1,x,y2,'-.k',x,y3,'--r') 
    legend('Shortening','Lengthening','Accommodating PT') 
    xlabel('\rho (weight of side street volume)') 
    ylabel('Delay caused by adding PT (veh-sec)') 
    title ({['Maximum Percentage Permitted to']; ['Add to/Subtract from 

Cycle Length, \mu = ', num2str(mu*100), '%']}) 
end 
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% This function compares hourly delay caused by accommodating pedestrian 
% timing and non-accommodating PT 
% By Ali Gholami------12/30/2015 

  
function [y1, y2, y3, comparison, which_method] = compare3 (c, gpercent, 

glpercent, ta, vp, vlpercent, vspercent, mu, rho, E, n, fs, vmfrom, 

vminterval, vmto) 

  

 
fs = fs / 3600; 
comparison = []; 
which_method = []; 
y1 = []; 
y2 = []; 
y3 = []; 
for ii = vmfrom:vminterval:vmto % Main treet volume 
    vm = ii / 3600; 
    vs = ii * vspercent / 3600; 
    vl = ii * vlpercent / 3600; 

     
    g = gpercent * c; 
    gl = glpercent * c; 

  
    [dns_1, dns_2, dns_total, dnl_1, dnl_2, dnl_total] = dn(c, g, gl, ta, 

vm, fs, vp, vs, vl, mu, rho, E); 
    [da1, dan, da_total] = da(c, n, g, ta, vm, fs, vp, vs, rho); 
    besttransition = min (dns_total, dnl_total); 
    accomm_delay_increase = (da_total - besttransition)/da_total*100; 
    a = [ta; c; vm*3600; vs*3600; vl*3600; vp; mu; rho; dns_total; 

dnl_total; da_total]; 
    b = [ta; c; vm*3600; vs*3600; vl*3600; vp; mu; rho; 

accomm_delay_increase]; 
    comparison = [comparison, a]; % Comparison of shortening, lengthening 

and accommodating 
    which_method = [which_method, b]; 

     
    y1 = [y1, dns_total]; 
    y2 = [y2, dnl_total]; 
    y3 = [y3, da_total]; 

  
end 
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% This function compares hourly delay caused by accommodating pedestrian 
% timing and non-accommodating PT 
% By Ali Gholami------12/30/2015 

  
function [y1, comparison, which_method] = compare4 (gpercent, glpercent, 

vlpercent, vspercent, mu, rho, E, n, fs, vmfrom, vminterval, vmto) 
 

comparison = []; 
which_method = []; 
fs = fs / 3600; 

  
for kk = 60:20:200 
    c = kk; 

     
    for tt = 5:10:55 
        ta = tt; 
        y1 = []; 
        for jj = 5:10:65 % Pedestrian 
            vp = jj; 
            best_tran_matrix = []; 
            for ii = vmfrom:vminterval:vmto % Main treet volume 
                vm = ii / 3600; 
                vs = ii * vspercent / 3600; 

                 
                vl = ii * vlpercent / 3600; 
                g = gpercent * c; 
                gl = glpercent * c; 

  
                [dns_1, dns_2, dns_total, dnl_1, dnl_2, dnl_total] = dn(c, 

g, gl, ta, vm, fs, vp, vs, vl, mu, rho, E); 
                [da1, dan, da_total] = da(c, n, g, ta, vm, fs, vp, vs, 

rho); 
                besttransition = min (dns_total, dnl_total); 
                accomm_delay_increase = (da_total - 

besttransition)/da_total*100; 
                best_tran_matrix = [best_tran_matrix, 

accomm_delay_increase]; 
                a = [ta; c; vm*3600; vs*3600; vl*3600; vp; mu; rho; 

dns_total; dnl_total; da_total]; 
                b = [ta; c; vm*3600; vs*3600; vl*3600; vp; mu; rho; 

accomm_delay_increase]; 
                comparison = [comparison, a]; % Comparison of shortening, 

lengthening and accommodating 
                which_method = [which_method, b]; 

                 
            end 
            y1 = [y1; best_tran_matrix]; 

  
        end 
        x=vmfrom:vminterval:vmto; 
        curve1 = fit(x',(y1(1,:))','smoothingspline'); 
        curve2 = fit(x',(y1(2,:))','smoothingspline'); 
        curve3 = fit(x',(y1(3,:))','smoothingspline'); 
        curve4 = fit(x',(y1(4,:))','smoothingspline'); 
        curve5 = fit(x',(y1(5,:))','smoothingspline'); 
        curve6 = fit(x',(y1(6,:))','smoothingspline'); 
        curve7 = fit(x',(y1(7,:))','smoothingspline'); 
        figure 
        plot(curve1) 
        hold on 
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        plot(curve2, '--g') 
        plot(curve3, ':k') 
        plot(curve4, '-.b') 
        plot(curve5, 'k') 
        plot(curve6, '--c') 
        plot(curve7, ':r') 
        %plot(x, y1(1,:),x, y1(2,:),x, y1(3,:),x, y1(4,:),x, y1(5,:),x, 

y1(6,:),x, y1(7,:)) 
        legend('Ped Vol. = 5','Ped Vol. = 15','Ped Vol. = 25', 'Ped Vol. = 

35','Ped Vol. = 45','Ped Vol. = 55','Ped Vol. = 65','Location','southeast') 
        xlabel({'MAIN STREET VOLUME (VPH)'}) 
        ylabel({'AVERAGE DELAY INCREMENT'; 'AFTER ACCOMMODATING PEDESTRIAN 

TIMING (%)'}) 
        title ({['ADDITIONAL PEDESTRIAN TIME (t_{a}) = ', num2str(ta)]; 

['CYCLE LENGTH = ', num2str(c)]}) 

  
    end 
end 
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function varargout = PeTASC(varargin) 
% PETASC MATLAB code for PeTASC.fig 
%      PETASC, by itself, creates a new PETASC or raises the existing 
%      singleton*. 
% 
%      H = PETASC returns the handle to a new PETASC or the handle to 
%      the existing singleton*. 
% 
%      PETASC('CALLBACK',hObject,eventData,handles,...) calls the local 
%      function named CALLBACK in PETASC.M with the given input arguments. 
% 
%      PETASC('Property','Value',...) creates a new PETASC or raises the 
%      existing singleton*.  Starting from the left, property value pairs 

are 
%      applied to the GUI before PeTASC_OpeningFcn gets called.  An 
%      unrecognized property name or invalid value makes property 

application 
%      stop.  All inputs are passed to PeTASC_OpeningFcn via varargin. 
% 
%      *See GUI Options on GUIDE's Tools menu.  Choose "GUI allows only one 
%      instance to run (singleton)". 
% 
% See also: GUIDE, GUIDATA, GUIHANDLES 

  
% Edit the above text to modify the response to help PeTASC 

  
% Last Modified by GUIDE v2.5 06-Jan-2016 15:58:31 

  
% Begin initialization code - DO NOT EDIT 
gui_Singleton = 1; 
gui_State = struct('gui_Name',       mfilename, ... 
                   'gui_Singleton',  gui_Singleton, ... 
                   'gui_OpeningFcn', @PeTASC_OpeningFcn, ... 
                   'gui_OutputFcn',  @PeTASC_OutputFcn, ... 
                   'gui_LayoutFcn',  [] , ... 
                   'gui_Callback',   []); 
if nargin && ischar(varargin{1}) 
    gui_State.gui_Callback = str2func(varargin{1}); 
end 

  
if nargout 
    [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:}); 
else 
    gui_mainfcn(gui_State, varargin{:}); 
end 
% End initialization code - DO NOT EDIT 

  

  
% --- Executes just before PeTASC is made visible. 
function PeTASC_OpeningFcn(hObject, eventdata, handles, varargin) 
% This function has no output args, see OutputFcn. 
% hObject    handle to figure 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
% varargin   command line arguments to PeTASC (see VARARGIN) 

  
% Choose default command line output for PeTASC 
handles.output = hObject; 

  
% Update handles structure 
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guidata(hObject, handles); 

  
% UIWAIT makes PeTASC wait for user response (see UIRESUME) 
% uiwait(handles.figure1); 

  

  
% --- Outputs from this function are returned to the command line. 
function varargout = PeTASC_OutputFcn(hObject, eventdata, handles)  
% varargout  cell array for returning output args (see VARARGOUT); 
% hObject    handle to figure 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 

  
% Get default command line output from handles structure 
varargout{1} = handles.output; 

  

  
% --- Executes on button press in pushbutton1. 
function pushbutton1_Callback(hObject, eventdata, handles) 
% hObject    handle to pushbutton1 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
c = str2num(get(handles.edit1,'String')); 
gpercent = str2num(get(handles.edit2,'String')); 
glpercent = str2num(get(handles.edit3,'String')); 
ta = str2num(get(handles.edit4,'String')); 
vp = str2num(get(handles.edit5,'String')); 
vlpercent = str2num(get(handles.edit6,'String')); 
vspercent = str2num(get(handles.edit7,'String')); 
mu = str2num(get(handles.edit8,'String')); 
rho = str2num(get(handles.edit9,'String')); 
E = str2num(get(handles.edit10,'String')); 
n = str2num(get(handles.edit11,'String')); 
fs = str2num(get(handles.edit12,'String')); 
vmfrom = str2num(get(handles.edit13,'String')); 
vminterval = str2num(get(handles.edit14,'String')); 
vmto = str2num(get(handles.edit15,'String')); 

  
[y1, y2, y3, comparison, which_method] = compare3 (c, gpercent, glpercent, 

ta, vp, vlpercent, vspercent, mu, rho, E, n, fs, vmfrom, vminterval, vmto) 
x=vmfrom:vminterval:vmto; 
% figure 
% plot(x, y1,x,y2,x,y3) 
% legend('Shortening','Lengthening','Accommodating PT') 
% xlabel('Volume (vehicle per approach') 
% ylabel('Delay caused by adding PT (veh-sec)') 
% y=myfunction(x); 
plot(handles.axes1,x, y1,x,y2,'-.k',x,y3, '--r'); 
legend('Shortening','Lengthening','Accommodating PT') 
xlabel('Volume (vehicle per approach)') 
ylabel('Delay caused by adding PT (veh-sec)') 
title ({'COMPARISON OF PEDESTRIAN TIMING'; 'ACCOMMODATION METHODS'}) 
% figure(1); 
% plot(x,y); 

  

  

  
function edit1_Callback(hObject, eventdata, handles) 
% hObject    handle to edit1 (see GCBO) 
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% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 

  
% Hints: get(hObject,'String') returns contents of edit1 as text 
%        str2double(get(hObject,'String')) returns contents of edit1 as a 

double 

  

  
% --- Executes during object creation, after setting all properties. 
function edit1_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to edit1 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns called 

  
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 

  

  

  
function edit2_Callback(hObject, eventdata, handles) 
% hObject    handle to edit2 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 

  
% Hints: get(hObject,'String') returns contents of edit2 as text 
%        str2double(get(hObject,'String')) returns contents of edit2 as a 

double 

  

  
% --- Executes during object creation, after setting all properties. 
function edit2_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to edit2 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns called 

  
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 

  

  

  
function edit3_Callback(hObject, eventdata, handles) 
% hObject    handle to edit3 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 

  
% Hints: get(hObject,'String') returns contents of edit3 as text 
%        str2double(get(hObject,'String')) returns contents of edit3 as a 

double 
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% --- Executes during object creation, after setting all properties. 
function edit3_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to edit3 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns called 

  
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 

  

  

  
function edit4_Callback(hObject, eventdata, handles) 
% hObject    handle to edit4 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 

  
% Hints: get(hObject,'String') returns contents of edit4 as text 
%        str2double(get(hObject,'String')) returns contents of edit4 as a 

double 

  

  
% --- Executes during object creation, after setting all properties. 
function edit4_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to edit4 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns called 

  
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 

  

  

  
function edit5_Callback(hObject, eventdata, handles) 
% hObject    handle to edit5 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 

  
% Hints: get(hObject,'String') returns contents of edit5 as text 
%        str2double(get(hObject,'String')) returns contents of edit5 as a 

double 

  

  
% --- Executes during object creation, after setting all properties. 
function edit5_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to edit5 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns called 

  
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
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if ispc && isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 

  

  

  
function edit6_Callback(hObject, eventdata, handles) 
% hObject    handle to edit6 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 

  
% Hints: get(hObject,'String') returns contents of edit6 as text 
%        str2double(get(hObject,'String')) returns contents of edit6 as a 

double 

  

  
% --- Executes during object creation, after setting all properties. 
function edit6_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to edit6 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns called 

  
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 

  

  

  
function edit7_Callback(hObject, eventdata, handles) 
% hObject    handle to edit7 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 

  
% Hints: get(hObject,'String') returns contents of edit7 as text 
%        str2double(get(hObject,'String')) returns contents of edit7 as a 

double 

  

  
% --- Executes during object creation, after setting all properties. 
function edit7_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to edit7 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns called 

  
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 

  

  

  
function edit8_Callback(hObject, eventdata, handles) 
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% hObject    handle to edit8 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 

  
% Hints: get(hObject,'String') returns contents of edit8 as text 
%        str2double(get(hObject,'String')) returns contents of edit8 as a 

double 

  

  
% --- Executes during object creation, after setting all properties. 
function edit8_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to edit8 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns called 

  
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 

  

  

  
function edit9_Callback(hObject, eventdata, handles) 
% hObject    handle to edit9 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 

  
% Hints: get(hObject,'String') returns contents of edit9 as text 
%        str2double(get(hObject,'String')) returns contents of edit9 as a 

double 

  

  
% --- Executes during object creation, after setting all properties. 
function edit9_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to edit9 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns called 

  
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 

  

  

  
function edit10_Callback(hObject, eventdata, handles) 
% hObject    handle to edit10 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 

  
% Hints: get(hObject,'String') returns contents of edit10 as text 
%        str2double(get(hObject,'String')) returns contents of edit10 as a 

double 
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% --- Executes during object creation, after setting all properties. 
function edit10_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to edit10 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns called 

  
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 

  

  

  
function edit11_Callback(hObject, eventdata, handles) 
% hObject    handle to edit11 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 

  
% Hints: get(hObject,'String') returns contents of edit11 as text 
%        str2double(get(hObject,'String')) returns contents of edit11 as a 

double 

  

  
% --- Executes during object creation, after setting all properties. 
function edit11_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to edit11 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns called 

  
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 

  

  

  
function edit12_Callback(hObject, eventdata, handles) 
% hObject    handle to edit12 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 

  
% Hints: get(hObject,'String') returns contents of edit12 as text 
%        str2double(get(hObject,'String')) returns contents of edit12 as a 

double 

  

  
% --- Executes during object creation, after setting all properties. 
function edit12_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to edit12 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns called 

  
% Hint: edit controls usually have a white background on Windows. 
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%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 

  

  

  
function edit13_Callback(hObject, eventdata, handles) 
% hObject    handle to edit15 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 

  
% Hints: get(hObject,'String') returns contents of edit15 as text 
%        str2double(get(hObject,'String')) returns contents of edit15 as a 

double 

  

  
% --- Executes during object creation, after setting all properties. 
function edit13_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to edit15 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns called 

  
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 

  

  

  
function edit14_Callback(hObject, eventdata, handles) 
% hObject    handle to edit14 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 

  
% Hints: get(hObject,'String') returns contents of edit14 as text 
%        str2double(get(hObject,'String')) returns contents of edit14 as a 

double 

  

  
% --- Executes during object creation, after setting all properties. 
function edit14_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to edit14 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns called 

  
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 
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function edit15_Callback(hObject, eventdata, handles) 
% hObject    handle to edit15 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 

  
% Hints: get(hObject,'String') returns contents of edit15 as text 
%        str2double(get(hObject,'String')) returns contents of edit15 as a 

double 

  

  
% --- Executes during object creation, after setting all properties. 
function edit15_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to edit15 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns called 

  
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 

  

  

  
function edit16_Callback(hObject, eventdata, handles) 
% hObject    handle to edit14 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 

  
% Hints: get(hObject,'String') returns contents of edit14 as text 
%        str2double(get(hObject,'String')) returns contents of edit14 as a 

double 

  

  
% --- Executes during object creation, after setting all properties. 
function edit16_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to edit14 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns called 

  
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 

  

  

  
function edit17_Callback(hObject, eventdata, handles) 
% hObject    handle to edit13 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 

  
% Hints: get(hObject,'String') returns contents of edit13 as text 
%        str2double(get(hObject,'String')) returns contents of edit13 as a 

double 
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% --- Executes during object creation, after setting all properties. 
function edit17_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to edit13 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns called 

  
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 

  

  
% --- Executes on button press in pushbutton2. 
function pushbutton2_Callback(hObject, eventdata, handles) 
% hObject    handle to pushbutton2 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
c = str2num(get(handles.edit1,'String')); 
gpercent = str2num(get(handles.edit2,'String')); 
glpercent = str2num(get(handles.edit3,'String')); 
ta = str2num(get(handles.edit4,'String')); 
vp = str2num(get(handles.edit5,'String')); 
vlpercent = str2num(get(handles.edit6,'String')); 
vspercent = str2num(get(handles.edit7,'String')); 
mu = str2num(get(handles.edit8,'String')); 
rho = str2num(get(handles.edit9,'String')); 
E = str2num(get(handles.edit10,'String')); 
n = str2num(get(handles.edit11,'String')); 
fs = str2num(get(handles.edit12,'String')); 
vmfrom = str2num(get(handles.edit13,'String')); 
vminterval = str2num(get(handles.edit14,'String')); 
vmto = str2num(get(handles.edit15,'String')); 

  
[y1, y2, y3, comparison, which_method] = compare2 (c, gpercent, glpercent, 

ta, vp, vlpercent, vspercent, E, n, fs, vmto) 

  
% x=vmfrom:vminterval:vmto; 
% figure 
% plot(x, y1,x,y2,x,y3) 
% legend('Shortening','Lengthening','Accommodating PT') 
% xlabel('Volume (vehicle per approach') 
% ylabel('Delay caused by adding PT (veh-sec)') 
% y=myfunction(x); 
% plot(handles.axes1,x, y1,x,y2,x,y3); 
% legend('Shortening','Lengthening','Accommodating PT') 
% xlabel('Volume (vehicle per approach)') 
% ylabel('Delay caused by adding PT (veh-sec)') 
% title ({'COMPARISON OF PEDESTRIAN TIMING'; 'ACCOMMODATION METHODS'}) 
% figure(1); 
% plot(x,y); 

  

  
% --- Executes on button press in pushbutton3. 
function pushbutton3_Callback(hObject, eventdata, handles) 
% hObject    handle to pushbutton3 (see GCBO) 
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% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
c = str2num(get(handles.edit1,'String')); 
gpercent = str2num(get(handles.edit2,'String')); 
glpercent = str2num(get(handles.edit3,'String')); 
ta = str2num(get(handles.edit4,'String')); 
vp = str2num(get(handles.edit5,'String')); 
vlpercent = str2num(get(handles.edit6,'String')); 
vspercent = str2num(get(handles.edit7,'String')); 
mu = str2num(get(handles.edit8,'String')); 
rho = str2num(get(handles.edit9,'String')); 
E = str2num(get(handles.edit10,'String')); 
n = str2num(get(handles.edit11,'String')); 
fs = str2num(get(handles.edit12,'String')); 
vmfrom = str2num(get(handles.edit13,'String')); 
vminterval = str2num(get(handles.edit14,'String')); 
vmto = str2num(get(handles.edit15,'String')); 

  
[y1, comparison, which_method] = compare4 (gpercent, glpercent, vlpercent, 

vspercent, mu, rho, E, n, fs, vmfrom, vminterval, vmto) 

 

 


